High permittivity 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor thin films for high-value, wide-temperature capacitor applications

High permittivity 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (PMNT) relaxor thin films with a nearly pure perovskite structure as well as a dense and uniform microstructure have been prepared on Pb(Zr,Ti)O3-buffered platinized silicon substrates by sol-gel method. Interestingly, the PMNT thin film exhibits high dielectric permittivity, er ∼ 1200, and high dielectric tunability, ∼70% under a moderate E = 333 kV/cm, over a wide temperature range. These results are explained in terms of a relaxor behavior of the PMNT film. Moreover, the leakage current density of the PMNT thin film is reasonably low, roughly 5.2 × 10−6 A/cm2 at an electric field intensity of 400 kV/cm. As the dc electric field increases, the leakage current mechanism is transformed from ohmic law to Fowler–Nordheim tunneling mechanism. All the results obtained indicate that the PMNT relaxor thin film is a good candidate for high-value, wide-temperature capacitor applications.

[1]  A. Ashida,et al.  Direct piezoelectric properties of (100) and (111) BiFeO3 epitaxial thin films , 2012 .

[2]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[3]  Lili Wu,et al.  Synthesis and thermochemistry of relaxor ferroelectrics in the lead magnesium niobate–lead titanate (PMN–PT) solid solutions series , 2011 .

[4]  D. Remiens,et al.  Nanoscale study by piezoresponse force microscopy of relaxor 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 and 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thin films grown on platinum and LaNiO3 electrodes , 2010 .

[5]  Xiaohong Zhu,et al.  Enhancement of crystallographic and electrical properties in 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 thin films grown on Pb(Zr,Ti)O3-buffered platinized silicon substrates by sol-gel process , 2010 .

[6]  M. Itoh,et al.  Relaxor Pb(Mg(1/3)Nb(2/3))O3: a ferroelectric with multiple inhomogeneities. , 2009, Physical review letters.

[7]  Thomas R. Shrout,et al.  Electromechanical characterization of [Formula: see text] crystals as a function of crystallographic orientation and temperature. , 2009, Journal of applied physics.

[8]  Xiaohong Zhu,et al.  Ultralow dielectric losses in pyrochlore films of the PbO–MgO–Nb2O5–TiO2 system , 2009 .

[9]  Jianguo Zhu,et al.  Enhanced ferroelectric and dielectric properties of highly (100)-oriented 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 thin films with a special Pb(Zr0.2,Ti0.8)O3/PbOx bilayered buffer layer , 2008 .

[10]  K. Bouzehouane,et al.  Thickness-dependent structural and electrical properties of multiferroic Mn-doped BiFeO3 thin films grown epitaxially by pulsed laser deposition , 2008 .

[11]  D. Remiens,et al.  Low temperature perovskite crystallization of 70%PbMg1∕3Nb2∕3O3–30%PbTiO3 thin films deposited by sputtering and their electrical performance evaluation , 2007 .

[12]  D. Barbier,et al.  Modified free vibrating beam method for characterization of effective e31 coefficient and leakage resistance of piezoelectric thin films , 2006 .

[13]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[14]  N. Mathur,et al.  Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg(1/3)Nb(2/3)O(3)-0.1 PbTiO(3) near room temperature , 2006, cond-mat/0604268.

[15]  X. Meng,et al.  Effect of LaNiO3 buffer layers on the structure and electrical properties of sol–gel-derived Pb(Mg1/3Nb2/3)O3PbTiO3 thin films , 2005 .

[16]  X. Meng,et al.  Electrical and optical properties of Pb(Mg1∕3Nb2∕3)O3–PbTiO3 thin films prepared by chemical solution deposition , 2005 .

[17]  V. Shuvaeva,et al.  Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3–PbTiO3 , 2005 .

[18]  James F. Scott,et al.  Intrinsic dielectric response in ferroelectric nano-capacitors , 2004 .

[19]  Xiangcheng Chu,et al.  Texture Control of Sol‐Gel Derived Pb(Mg1/3Nb2/3)O3–PbTiO3 Thin Films Using Seeding Layer , 2004 .

[20]  S. B. Krupanidhi,et al.  Role of La0.5Sr0.5CoO3 template layers on dielectric and electrical properties of pulsed-laser ablated Pb(Nb2/3Mg1/3)O3-PbTiO3 thin films , 2003 .

[21]  N. Wakiya,et al.  Stabilization of perovskite Pb(Mg1/3Nb2/3)O3 thin film by a thin BaTiO3 buffer layer on Pt/Ti/SiO2/Si , 2002 .

[22]  Xiaoqing Pan,et al.  Perovskite phase stabilization in epitaxial Pb(Mg1/3Nb2/3)O3–PbTiO3Pb(Mg1/3Nb2/3)O3–PbTiO3 films by deposition onto vicinal (001) SrTiO3SrTiO3 substrates , 2001 .

[23]  G. Shirane,et al.  Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 2001, cond-mat/0107276.

[24]  S. Stemmer,et al.  Epitaxial Pb(Mg1/3Nb2/3)O3 thin films synthesized by metal-organic chemical vapor deposition , 2000 .

[25]  N. Setter,et al.  Relaxor behavior and electromechanical properties of Pb(Mg1/3Nb2/3)O3 thin films , 1998 .

[26]  W. Hackenberger,et al.  PHASE DEVELOPMENT AND ELECTRICAL PROPERTY ANALYSIS OF PULSED LASER DEPOSITED PB(MG1/3NB2/3)O3-PBTIO3 (70/30) EPITAXIAL THIN FILMS , 1998 .