The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage

The mortality after aneurysmal subarachnoid hemorrhage (SAH) is 50%, and most survivors suffer severe functional and cognitive deficits. Half of SAH patients deteriorate 5 to 14 days after the initial bleeding, so-called delayed cerebral ischemia (DCI). Although often attributed to vasospasms, DCI may develop in the absence of angiographic vasospasms, and therapeutic reversal of angiographic vasospasms fails to improve patient outcome. The etiology of chronic neurodegenerative changes after SAH remains poorly understood. Brain oxygenation depends on both cerebral blood flow (CBF) and its microscopic distribution, the so-called capillary transit time heterogeneity (CTH). In theory, increased CTH can therefore lead to tissue hypoxia in the absence of severe CBF reductions, whereas reductions in CBF, paradoxically, improve brain oxygenation if CTH is critically elevated. We review potential sources of elevated CTH after SAH. Pericyte constrictions in relation to the initial ischemic episode and subsequent oxidative stress, nitric oxide depletion during the pericapillary clearance of oxyhemoglobin, vasogenic edema, leukocytosis, and astrocytic endfeet swelling are identified as potential sources of elevated CTH, and hence of metabolic derangement, after SAH. Irreversible changes in capillary morphology and function are predicted to contribute to long-term relative tissue hypoxia, inflammation, and neurodegeneration. We discuss diagnostic and therapeutic implications of these predictions.

[1]  John H. Zhang,et al.  Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. , 2008, Acta neurochirurgica. Supplement.

[2]  S. Mayer,et al.  Predictors of Cognitive Dysfunction After Subarachnoid Hemorrhage , 2002, Stroke.

[3]  E. Keller,et al.  Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought , 2009, Neurological research.

[4]  J. Pickard,et al.  Enhancement of cerebral blood flow using systemic hypertonic saline therapy improves outcome in patients with poor-grade spontaneous subarachnoid hemorrhage. , 2007, Journal of neurosurgery.

[5]  V. Feigin,et al.  Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. , 2005, The Cochrane database of systematic reviews.

[6]  U. Dirnagl,et al.  Ischemia triggered by spreading neuronal activation is induced by endothelin‐1 and hemoglobin in the subarachnoid space , 2003, Annals of neurology.

[7]  S. Weigand,et al.  Predictors of Cerebral Infarction in Aneurysmal Subarachnoid Hemorrhage , 2004, Stroke.

[8]  S. Mayer,et al.  Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2) , 2011, The Lancet Neurology.

[9]  G. D. del Zoppo,et al.  Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia , 2009, Journal of neuroscience research.

[10]  Kim Mouridsen,et al.  The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[12]  D. Attwell,et al.  Bidirectional control of CNS capillary diameter by pericytes , 2006, Nature.

[13]  B Mazoyer,et al.  Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. , 1989, Brain : a journal of neurology.

[14]  A. Bonev,et al.  Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels , 2012, Proceedings of the National Academy of Sciences.

[15]  J. Pickard,et al.  Effect of Hypertonic Saline on Cerebral Blood Flow in Poor-Grade Patients With Subarachnoid Hemorrhage , 2003, Stroke.

[16]  G. Cold,et al.  Effect of nimodipine on cerebral blood flow and cerebrovascular reactivity after subarachnoid haemorrhage , 1999, Acta neurologica Scandinavica.

[17]  A. Algra,et al.  Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. , 1997, Stroke.

[18]  E. Niskanen,et al.  Atrophic Enlargement of CSF Volume after Subarachnoid Hemorrhage: Correlation with Neuropsychological Outcome , 2010, American Journal of Neuroradiology.

[19]  J. M. Ollinger,et al.  Positron Emission Tomography , 2018, Handbook of Small Animal Imaging.

[20]  D. R. Anderson,et al.  Contractile responses of cultured bovine retinal pericytes to angiotensin II. , 1997, Archives of ophthalmology.

[21]  E. Enevoldsen,et al.  Cerebrovascular reactivity in patients with ruptured intracranial aneurysms. , 1985, Journal of neurosurgery.

[22]  E. Watanabe,et al.  PLATELET AND LEUKOCYTE ADHESION IN THE MICROVASCULATURE AT THE CEREBRAL SURFACE IMMEDIATELY AFTER SUBARACHNOID HEMORRHAGE , 2009, Neurosurgery.

[23]  R. Pluta Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. , 2005, Pharmacology & therapeutics.

[24]  S. Shiva Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function☆ , 2013, Redox biology.

[25]  A. Stubhaug,et al.  Hypertonic saline (7.2%) in 6% hydroxyethyl starch reduces intracranial pressure and improves hemodynamics in a placebo-controlled study involving stable patients with subarachnoid hemorrhage* , 2006, Critical care medicine.

[26]  K. Dizdarevic,et al.  Modified Lund concept versus cerebral perfusion pressure-targeted therapy: A randomised controlled study in patients with secondary brain ischaemia , 2012, Clinical Neurology and Neurosurgery.

[27]  S. Mayer,et al.  Randomized Trial of Clazosentan in Patients With Aneurysmal Subarachnoid Hemorrhage Undergoing Endovascular Coiling , 2012, Stroke.

[28]  N. Kitchen,et al.  Triple-H therapy in the management of aneurysmal subarachnoid haemorrhage , 2003, The Lancet Neurology.

[29]  N. Christou,et al.  Hypertonic saline resuscitation attenuates neutrophil lung sequestration and transmigration by diminishing leukocyte-endothelial interactions in a two-hit model of hemorrhagic shock and infection. , 2003, The Journal of trauma.

[30]  K. Audus,et al.  Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. , 1994, European journal of pharmacology.

[31]  E. Wijdicks,et al.  Cerebral salt wasting: pathophysiology, diagnosis, and treatment. , 2010, Neurosurgery clinics of North America.

[32]  I. C. Schaaf,et al.  Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review , 2010, Critical care.

[33]  N. Plesnila,et al.  Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats: A comparison between small volume resuscitation and mannitol , 2006, Journal of the Neurological Sciences.

[34]  Ming-feng Yang,et al.  Blocking cerebral lymphatic drainage deteriorates cerebral oxidative injury in rats with subarachnoid hemorrhage. , 2011, Acta neurochirurgica. Supplement.

[35]  J. Pickard,et al.  Vasospasm Shortens Cerebral Arterial Time Constant , 2012, Neurocritical Care.

[36]  M. Tseng,et al.  Summary of Evidence on Immediate Statins Therapy Following Aneurysmal Subarachnoid Hemorrhage , 2011, Neurocritical care.

[37]  Role of nitric oxide in the CBF autoregulation during acute stage after subarachnoid haemorrhage in rat pial artery , 2003, Fundamental & clinical pharmacology.

[38]  D. R. Anderson,et al.  Glaucoma, capillaries and pericytes. 1. Blood flow regulation. , 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[39]  R. Funk,et al.  In situ observation of living pericytes in rat retinal capillaries. , 1998, Microvascular research.

[40]  M. Lauritzen,et al.  Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. , 2006, Brain : a journal of neurology.

[41]  Z. Xia,et al.  Effects of blockade of cerebral lymphatic drainage on regional cerebral blood flow and brain edema after subarachnoid hemorrhage. , 2006, Clinical hemorheology and microcirculation.

[42]  A. Hudetz,et al.  Hypoxemia alters erythrocyte perfusion pattern in the cerebral capillary network. , 2000, Microvascular research.

[43]  D. Böker,et al.  Arteriovenous differences of oxygen and transcranial Doppler sonography in the management of aneurysmatic subarachnoid hemorrhage , 2008, Journal of Clinical Neuroscience.

[44]  Marek Czosnyka,et al.  Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage. , 2003, Neurosurgery.

[45]  N. Plesnila,et al.  Experimental Subarachnoid Hemorrhage Causes Early and Long-Lasting Microarterial Constriction and Microthrombosis: An in-vivo Microscopy Study , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  S. Asenbaum,et al.  Low cerebrovascular reserve capacity in long-term follow-up after subarachnoid hemorrhage. , 2005, Surgical neurology.

[47]  D. R. Anderson,et al.  Oxygen modulation of guanylate cyclase-mediated retinal pericyte relaxations with 3-morpholino-sydnonimine and atrial natriuretic peptide. , 1997, Investigative ophthalmology & visual science.

[48]  Turgay Dalkara,et al.  Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery , 2009, Nature Medicine.

[49]  J. Cruickshank,et al.  The blood leucocyte count and its prognostic significance in subarachnoid haemorrhage. , 1974, Brain : a journal of neurology.

[50]  B R Rosen,et al.  Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. , 2000, Stroke.

[51]  D. R. Anderson,et al.  Glaucoma, capillaries and pericytes. 4. Beta-adrenergic activation of cultured retinal pericytes. , 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[52]  O. R. Blaumanis,et al.  Rapid solute transport throughout the brain via paravascular fluid pathways. , 1990, Advances in neurology.

[53]  F. Tomasello,et al.  Time-Course of Blood-Brain Barrier Permeability Changes After Experimental Subarachnoid Haemorrhage , 2000, Acta Neurochirurgica.

[54]  K. Mouridsen,et al.  Reliable estimation of capillary transit time distributions at voxel-level using DSC-MRI , 2011 .

[55]  N. Plesnila,et al.  Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats , 2007, Brain Research.

[56]  John H. Zhang,et al.  Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[57]  M. McGirt,et al.  Simvastatin Increases Endothelial Nitric Oxide Synthase and Ameliorates Cerebral Vasospasm Resulting From Subarachnoid Hemorrhage , 2002, Stroke.

[58]  E. Mackenzie,et al.  Cerebral Blood Flow and Metabolism , 1993 .

[59]  Jan Claassen,et al.  Defining Vasospasm After Subarachnoid Hemorrhage: What Is the Most Clinically Relevant Definition? , 2009, Stroke.

[60]  N. Toda,et al.  Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. , 1993, Circulation research.

[61]  S. Mayer,et al.  Effect of Prior Statin Use on Functional Outcome and Delayed Vasospasm after Acute Aneurysmal Subarachnoid Hemorrhage: A Matched Controlled Cohort Study , 2005, Neurosurgery.

[62]  J. LaManna,et al.  Brain tissue oxygen concentration measurements. , 2007, Antioxidants & redox signaling.

[63]  R Shane Tubbs,et al.  Hypertonic saline for treating raised intracranial pressure: literature review with meta-analysis. , 2012, Journal of neurosurgery.

[64]  G. Semenza,et al.  Hypoxia‐inducible factor 1 mediates increased expression of NADPH oxidase‐2 in response to intermittent hypoxia , 2011, Journal of cellular physiology.

[65]  R. Macdonald,et al.  Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage , 2009, BMC Neuroscience.

[66]  K. Messmer,et al.  Hypertonic Fluid Resuscitation from Subarachnoid Hemorrhage in Rats , 2004, Neurosurgery.

[67]  P. Grände,et al.  The “Lund Concept” for the treatment of severe head trauma – physiological principles and clinical application , 2006, Intensive Care Medicine.

[68]  D. Parkinson,et al.  Leukocytosis and subarachnoid hemorrhage. , 1984, Surgical neurology.

[69]  G. Pawlik,et al.  Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study , 1981, Brain Research.

[70]  Svetlana Lublinsky,et al.  Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: Possible link to blood–brain barrier dysfunction , 2012, Epilepsia.

[71]  L. Liaudet,et al.  Nitric oxide and peroxynitrite in health and disease. , 2007, Physiological reviews.

[72]  E. Niskanen,et al.  Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study , 2009, Neuroradiology.

[73]  D. Attwell,et al.  Glial and neuronal control of brain blood flow , 2022 .

[74]  D. Grosset,et al.  Use of transcranial Doppler sonography to predict development of a delayed ischemic deficit after subarachnoid hemorrhage. , 1993, Journal of neurosurgery.

[75]  C. Iadecola,et al.  Hypertension and cerebrovascular dysfunction. , 2008, Cell metabolism.

[76]  R. Macdonald,et al.  A review of hemoglobin and the pathogenesis of cerebral vasospasm. , 1991, Stroke.

[77]  J. Tanus-Santos,et al.  Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. , 2011, Free radical biology & medicine.

[78]  Joseph F. Clark,et al.  Bilirubin Production and Oxidation in CSF of Patients with Cerebral Vasospasm after Subarachnoid Hemorrhage , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[79]  S. Mayer,et al.  Randomised trial of clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid hemorrhage undergoing surgical clipping (CONSCIOUS-2). , 2013, Acta neurochirurgica. Supplement.

[80]  B. Matta,et al.  Cerebral blood flow augmentation in patients with severe subarachnoid haemorrhage. , 2005, Acta neurochirurgica. Supplement.

[81]  K. Uemura,et al.  Sequential changes in cerebral blood flow and metabolism in patients with subarachnoid haemorrhage , 2005, Acta Neurochirurgica.

[82]  J. Roh,et al.  Early Intravenous Infusion of Sodium Nitrite Protects Brain Against In Vivo Ischemia-Reperfusion Injury , 2006, Stroke.

[83]  R. Macdonald,et al.  Sphenopalatine ganglion stimulation for vasospasm after experimental subarachnoid hemorrhage. , 2011, Journal of neurosurgery.

[84]  S. Snyder,et al.  Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. , 1996, Journal of neurosurgery.

[85]  P. Fagenholz,et al.  Hypoxia and inflammation. , 2011, The New England journal of medicine.

[86]  J. Provencio,et al.  Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. , 2013, Acta neurochirurgica. Supplement.

[87]  A. Cruickshank,et al.  Subarachnoid haemorrhage , 2007, The Lancet.

[88]  A. Rabinstein Subarachnoid hemorrhage is followed by temporomesial volume loss: MRI volumetric study , 2006, Neurology.

[89]  R. Macdonald,et al.  Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage. , 2013, Acta neurochirurgica. Supplement.

[90]  R. Roman,et al.  Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[91]  H. Lam,et al.  Role of endothelin in diabetic retinopathy. , 2003, Current vascular pharmacology.

[92]  T. Schweizer,et al.  Cognitive and Functional Outcome After Aneurysmal Subarachnoid Hemorrhage , 2010, Stroke.

[93]  M E Raichle,et al.  Regional cerebral blood flow and metabolism in reversible ischemia due to vasospasm. Determination by positron emission tomography. , 1985, Journal of neurosurgery.

[94]  Bernd Mayer,et al.  Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels , 1993, Brain Research.

[95]  G. Schmid-Schönbein,et al.  Mechanisms and consequences of cell activation in the microcirculation. , 1996, Cardiovascular research.

[96]  E. Oldfield,et al.  Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. , 1998, Journal of neurosurgery.

[97]  P. Vajkoczy,et al.  Effects of the selective endothelin A (ETA) receptor antagonist Clazosentan on cerebral perfusion and cerebral oxygenation following severe subarachnoid hemorrhage – preliminary results from a randomized clinical series , 2007, Acta Neurochirurgica.

[98]  J. Pickard,et al.  Effects of Acute Treatment With Pravastatin on Cerebral Vasospasm, Autoregulation, and Delayed Ischemic Deficits After Aneurysmal Subarachnoid Hemorrhage: A Phase II Randomized Placebo-Controlled Trial , 2005, Stroke.

[99]  V. Seifert,et al.  Endothelin and subarachnoid hemorrhage: an overview. , 1998, Neurosurgery.

[100]  T. Dawson,et al.  Nitric oxide neurotoxicity , 1996, Journal of Chemical Neuroanatomy.

[101]  S. Shiva Mitochondria as metabolizers and targets of nitrite. , 2010, Nitric oxide : biology and chemistry.

[102]  U. Laufs,et al.  Rapid effects on vascular function after initiation and withdrawal of atorvastatin in healthy, normocholesterolemic men. , 2001, The American journal of cardiology.

[103]  B. Matta,et al.  Hypertonic Saline In Patients With Poor-Grade Subarachnoid Hemorrhage Improves Cerebral Blood Flow, Brain Tissue Oxygen, and pH , 2010, Stroke.

[104]  Arne Møller,et al.  The capillary dysfunction hypothesis of Alzheimer's disease , 2013, Neurobiology of Aging.

[105]  S. Heiland,et al.  Evolution of early perihemorrhagic changes—ischemia vs. edema An MRI study in rats , 2005, Experimental Neurology.

[106]  Leif Østergaard,et al.  Final infarct size after acute stroke: prediction with flow heterogeneity. , 2002, Radiology.

[107]  W. Kuschinsky,et al.  Patterns of capillary plasma perfusion in brains in conscious rats during normocapnia and hypercapnia. , 1995, Circulation research.

[108]  M. Könönen,et al.  Subarachnoid hemorrhage in the subacute stage: elevated apparent diffusion coefficient in normal-appearing brain tissue after treatment. , 2007, Radiology.

[109]  V. Seifert,et al.  The CSF concentration of ADMA, but not of ET-1, is correlated with the occurrence and severity of cerebral vasospasm after subarachnoid hemorrhage , 2012, Neuroscience Letters.

[110]  C. Kim,et al.  Impairment of Autoregulatory Vasodilation by NAD(P)H Oxidase—Dependent Superoxide Generation during Acute Stage of Subarachnoid Hemorrhage in Rat Pial Artery , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[111]  E. Oldfield,et al.  Association between cerebrospinal fluid levels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage. , 2004, Journal of neurosurgery.

[112]  G. Gallia,et al.  Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage , 2006, Neurological research.

[113]  E. Oldfield,et al.  Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a phase IIa study. , 2013, Journal of neurosurgery.

[114]  I. Nakagawa,et al.  Early Inhibition of Natriuresis Suppresses Symptomatic Cerebral Vasospasm in Patients with Aneurysmal Subarachnoid Hemorrhage , 2013, Cerebrovascular Diseases.

[115]  S. Moncada,et al.  Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor , 1986, Nature.

[116]  T. Takano,et al.  Cortical spreading depression causes and coincides with tissue hypoxia , 2007, Nature Neuroscience.

[117]  D. R. Anderson,et al.  Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. , 1994, Investigative ophthalmology & visual science.

[118]  Alan N. Schechter,et al.  Effect of Blood Nitrite and Nitrate Levels on Murine Platelet Function , 2013, PloS one.

[119]  A. Friedman,et al.  Leukocytosis as an independent risk factor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. , 2003, Journal of neurosurgery.

[120]  Joseph F. Clark,et al.  Role of bilirubin oxidation products in the pathophysiology of DIND following SAH. , 2013, Acta neurochirurgica. Supplement.

[121]  M. Mathru Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients , 2010 .

[122]  A. Villringer,et al.  Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. , 1994, Circulation research.

[123]  J. Cruickshank,et al.  THE BLOOD LEEUCOCYTE COUNT AND ITS PROGNOSTIC SIGNIFICANCE IN SUBARACHNOID HæMORRHAGE , 1974 .

[124]  A. Ficzere,et al.  Cerebrovascular reserve capacity many years after vasospasm due to aneurysmal subarachnoid hemorrhage. A transcranial Doppler study with acetazolamide test. , 1997, Stroke.

[125]  H. V. Crevel,et al.  Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage , 1986, Neurology.

[126]  M. Könönen,et al.  Subarachnoid hemorrhage is followed by temporomesial volume loss: MRI volumetric study. , 2006, Neurology.

[127]  R. Aaslid,et al.  Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. , 1984, Journal of neurosurgery.

[128]  D. Yarnitsky,et al.  Reversal of cerebral vasospasm by sphenopalatine ganglion stimulation in a dog model of subarachnoid hemorrhage. , 2005, Surgical neurology.

[129]  O. Carretero,et al.  Perivascular Superoxide Anion Contributes to Impairment of Endothelium-Dependent Relaxation: Role of gp91phox , 2002, Circulation.

[130]  S. Mayer,et al.  Global Cerebral Edema After Subarachnoid Hemorrhage: Frequency, Predictors, and Impact on Outcome , 2002, Stroke.

[131]  N. Lassen,et al.  The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. , 1966, Lancet.

[132]  V. Friedrich,et al.  Cerebral microvasculature is an early target of subarachnoid hemorrhage. , 2013, Acta neurochirurgica. Supplement.

[133]  A. Kramer Statins in the management of aneurysmal subarachnoid hemorrhage: an overview of animal research, observational studies, randomized controlled trials and meta-analyses. , 2011, Acta neurochirurgica. Supplement.

[134]  D. Puro,et al.  Effects of angiotensin II on the pericyte‐containing microvasculature of the rat retina , 2004, The Journal of physiology.

[135]  N. Stocchetti,et al.  Triggers for Aggressive Interventions in Subarachnoid Hemorrhage , 2011, Neurocritical care.

[136]  F. Rincon Early continuous hypertonic saline infusion in patients with severe cerebrovascular disease , 2012 .

[137]  A. Hudetz,et al.  Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. , 1995, The American journal of physiology.

[138]  T. Watanabe,et al.  The effect of a lipid hydroperoxide of arachidonic acid on the canine basilar artery. An experimental study on cerebral vasospasm. , 1981, Journal of neurosurgery.

[139]  J. Broderick,et al.  Initial and Recurrent Bleeding Are the Major Causes of Death Following Subarachnoid Hemorrhage , 1994, Stroke.

[140]  Leif Østergaard,et al.  Abnormal Intravoxel Cerebral Blood Flow Heterogeneity in Human Ischemic Stroke Determined by Dynamic Susceptibility Contrast Magnetic Resonance Imaging , 2005, Stroke.

[141]  U Dirnagl,et al.  Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? , 2000, Journal of neurosurgery.

[142]  M. Gladwin,et al.  Nitrite as regulator of hypoxic signaling in mammalian physiology , 2009, Medicinal research reviews.

[143]  T. Ichimura,et al.  Distribution of extracellular tracers in perivascular spaces of the rat brain , 1991, Brain Research.

[144]  M. Quintel,et al.  Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage* , 2007, Critical care medicine.

[145]  E. M. Renkin,et al.  B. W. Zweifach Award lecture. Regulation of the microcirculation. , 1985, Microvascular research.

[146]  K. Sahlin,et al.  Dietary inorganic nitrate improves mitochondrial efficiency in humans. , 2011, Cell metabolism.

[147]  S. Snyder,et al.  Possible Origins and Distribution of Immunoreactive Nitric Oxide Synthase-Containing Nerve Fibers in Cerebral Arteries , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[148]  Y. Fukuuchi,et al.  Moment Analysis of Microflow Histogram in Focal Ischemic Lesion to Evaluate Microvascular Derangement after Small Pial Arterial Occlusion in Rats , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[149]  T. Dóczi The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies , 2005, Acta Neurochirurgica.

[150]  E. Enevoldsen,et al.  Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. , 1985, Journal of neurosurgery.

[151]  R. Lonser,et al.  Reversal of cerebral vasospasm via intravenous sodium nitrite after subarachnoid hemorrhage in primates. , 2011, Journal of neurosurgery.

[152]  Karl J. Friston,et al.  Bayesian estimation of cerebral perfusion using a physiological model of microvasculature , 2006, NeuroImage.

[153]  Paul Vespa,et al.  Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association , 2012, Stroke.

[154]  T. Schweizer,et al.  Global cerebral atrophy after subarachnoid hemorrhage: a possible marker of acute brain injury and assessment of its impact on outcome. , 2013, Acta neurochirurgica. Supplement.

[155]  S. Mayer,et al.  Angiographic Vasospasm Is Strongly Correlated With Cerebral Infarction After Subarachnoid Hemorrhage , 2011, Stroke.

[156]  N. Christou,et al.  Hypertonic saline and the microcirculation. , 2003, The Journal of trauma.

[157]  J. Pickard,et al.  Transcranial Doppler ultrasound studies of cerebral autoregulation and subarachnoid hemorrhage in the rabbit. , 1990, Journal of neurosurgery.

[158]  E. Ross,et al.  Philosophy of Science Association , 2022 .

[159]  D. Kleinfeld,et al.  Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[160]  W. Hassler,et al.  The critical first minutes after subarachnoid hemorrhage. , 1988, Neurosurgery.

[161]  A. Algra,et al.  Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. , 1996, Stroke.

[162]  R. Duelli,et al.  Parallel changes of blood flow and heterogeneity of capillary plasma perfusion in rat brains during hypocapnia. , 1996, The American journal of physiology.

[163]  E. Enevoldsen,et al.  Intracranial pressure changes following aneurysm rupture. Part 1: clinical and angiographic correlations. , 1982, Journal of neurosurgery.

[164]  Nicholas F. Marko,et al.  Hyperosmolar Therapy for Intracranial Hypertension , 2012, Neurocritical Care.

[165]  R O Weller,et al.  Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology , 2008, Neuropathology and applied neurobiology.

[166]  R. Pluta Prolonged intravenous infusion of sodium nitrite delivers nitric oxide (NO) in humans. , 2013, Acta neurochirurgica. Supplement.

[167]  M. Dehouck,et al.  Endothelin-1 as a Mediator of Endothelial Cell–Pericyte Interactions in Bovine Brain Capillaries , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[168]  S. Luse,et al.  Electron microscopy of the brain in experimental edema. , 1960, Journal of neurosurgery.

[169]  J. Olson,et al.  Blood-brain barrier water permeability and brain osmolyte content during edema development. , 1997, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[170]  T. Yoshimine,et al.  A Randomized Controlled Trial of Hydrocortisone Against Hyponatremia in Patients With Aneurysmal Subarachnoid Hemorrhage , 2007, Stroke.

[171]  G N Stewart,et al.  Researches on the Circulation Time in Organs and on the Influences which affect it , 1893, The Journal of physiology.

[172]  G. E. Vates,et al.  A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β , 2012, Science Translational Medicine.

[173]  H. Kamel,et al.  Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: A meta-analysis of randomized clinical trials* , 2011, Critical care medicine.

[174]  Hongwei Jin,et al.  Cortical spreading depression activates and upregulates MMP-9. , 2004, The Journal of clinical investigation.

[175]  Leif Østergaard,et al.  The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[176]  J. Dreier,et al.  Delayed Cerebral Ischemia and Spreading Depolarization in Absence of Angiographic Vasospasm after Subarachnoid Hemorrhage , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[177]  O. Martinaud,et al.  Anatomy of executive deficit following ruptured anterior communicating artery aneurysm , 2009, European journal of neurology.

[178]  Xue-bo Sun,et al.  Potential Contribution of Hypoxia-Inducible Factor-1α, Aquaporin-4, and Matrix Metalloproteinase-9 to Blood–Brain Barrier Disruption and Brain Edema After Experimental Subarachnoid Hemorrhage , 2012, Journal of Molecular Neuroscience.

[179]  M. Gladwin,et al.  Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. , 2005, JAMA.