Laser–visual–inertial odometry and mapping with high robustness and low drift

Correspondence Ji Zhang, Kaarta, Inc., Pittsburgh, PA 15213. Email: ji@kaarta.com Abstract We present a data processing pipeline to online estimate ego‐motion and build a map of the traversed environment, leveraging data from a 3D laser scanner, a camera, and an inertial measurement unit (IMU). Different from traditional methods that use a Kalman filter or factor‐graph optimization, the proposed method employs a sequential, multilayer processing pipeline, solving for motion from coarse to fine. Starting with IMU mechanization for motion prediction, a visual–inertial coupled method estimates motion; then, a scan matching method further refines the motion estimates and registers maps. The resulting system enables high‐frequency, low‐ latency ego‐motion estimation, along with dense, accurate 3D map registration. Further, the method is capable of handling sensor degradation by automatic reconfiguration bypassing failure modules. Therefore, it can operate in the presence of highly dynamic motion as well as in the dark, texture‐less, and structure‐less environments. During experiments, the method demonstrates 0.22% of relative position drift over 9.3 km of navigation and robustness w.r.t. running, jumping, and even highway speed driving (up to 33m/s).

[1]  Robert Andersen Modern Methods for Robust Regression , 2007 .

[2]  Ji Zhang,et al.  On degeneracy of optimization-based state estimation problems , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Michael Bosse,et al.  Efficient Large‐scale Three‐dimensional Mobile Mapping for Underground Mines , 2014, J. Field Robotics.

[4]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[5]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[6]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[7]  Michael Bosse,et al.  Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping , 2012, IEEE Transactions on Robotics.

[8]  John J. Leonard,et al.  Towards consistent visual-inertial navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Fadi Dornaika,et al.  Hand-Eye Calibration , 1995, Int. J. Robotics Res..

[10]  Erik Wolfart,et al.  Pose interpolation SLAM for large maps using moving 3D sensors , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[12]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[14]  Albert S. Huang,et al.  Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera , 2011, ISRR.

[15]  Roland Siegwart,et al.  A Review of Point Cloud Registration Algorithms for Mobile Robotics , 2015, Found. Trends Robotics.

[16]  Julius Ziegler,et al.  StereoScan: Dense 3d reconstruction in real-time , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[17]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[18]  Ji Zhang,et al.  Enabling aggressive motion estimation at low-drift and accurate mapping in real-time , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[20]  Ji Zhang,et al.  Visual-lidar odometry and mapping: low-drift, robust, and fast , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Paul Timothy Furgale,et al.  Continuous-time batch estimation using temporal basis functions , 2012, 2012 IEEE International Conference on Robotics and Automation.

[22]  Ji Zhang,et al.  Real-time depth enhanced monocular odometry , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Roland Siegwart,et al.  Monocular Vision for Long‐term Micro Aerial Vehicle State Estimation: A Compendium , 2013, J. Field Robotics.

[24]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[25]  Ji Zhang,et al.  Aerial and Ground-Based Collaborative Mapping: An Experimental Study , 2017, FSR.

[26]  Peter I. Corke,et al.  Omnidirectional visual odometry for a planetary rover , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[27]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[28]  Sebastian Scherer,et al.  River mapping from a flying robot: state estimation, river detection, and obstacle mapping , 2012, Auton. Robots.

[29]  Sven Behnke,et al.  Mapping with Micro Aerial Vehicles by Registration of Sparse 3D Laser Scans , 2014, IAS.

[30]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[31]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[32]  Dimitrios G. Kottas,et al.  Efficient Visual-Inertial Navigation using a Rolling-Shutter Camera with Inaccurate Timestamps , 2014, Robotics: Science and Systems.

[33]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[34]  Carlos Hernández,et al.  Video-based, real-time multi-view stereo , 2011, Image Vis. Comput..

[35]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[36]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[37]  Ricardo Gutierrez-Osuna,et al.  An Iterative Image Registration Technique Using a Scale-Space Model , 2011 .

[38]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[39]  Hang Dong,et al.  Pose Interpolation for Laser‐based Visual Odometry , 2014, J. Field Robotics.

[40]  Wolfram Burgard,et al.  Real-time 3D visual SLAM with a hand-held camera , 2011 .

[41]  Anastasios I. Mourikis,et al.  Vision-aided inertial navigation with rolling-shutter cameras , 2014, Int. J. Robotics Res..

[42]  Jörg Stückler,et al.  Local multi-resolution representation for 6D motion estimation and mapping with a continuously rotating 3D laser scanner , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[43]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[44]  Geoffrey A. Hollinger,et al.  Target tracking without line of sight using range from radio , 2012, Auton. Robots.

[45]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[46]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[47]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[48]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[50]  John C. Hart,et al.  Multicore Construction of k-d Trees for High Dimensional Point Data , 2014 .

[51]  Adam Herout,et al.  Collar Line Segments for fast odometry estimation from Velodyne point clouds , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[52]  W. Burgard,et al.  Real-time 3 D visual SLAM with a hand-held RGB-D camera , 2011 .

[53]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[54]  Michael Bosse,et al.  Efficiently capturing large, complex cultural heritage sites with a handheld mobile 3D laser mapping system , 2014 .

[55]  Tao Wu,et al.  Plain-to-plain scan registration based on geometric distributions of points , 2015, 2015 IEEE International Conference on Information and Automation.