Edge-counting vectors, Fibonacci cubes, and Fibonacci triangle

Edge-counting vectors of subgraphs of Cartesian products are intro- duced as the counting vectors of the edges that project onto the factors. For several standard constructions their edge-counting vectors are computed. It is proved that the edge-counting vectors of Fibonacci cubes are precisely the rows of the Fibonacci trian- gle and that the edge-counting vectors of Lucas cubes are Fn 1-constant vectors. Some problems are listed along the way.

[1]  W.-J. Hsu,et al.  FIBONACCI CUBES—A CLASS OF SELF-SIMILAR GRAPHS , 1993 .

[2]  Sandi Klavzar,et al.  Characterizing subgraphs of Hamming graphs , 2005, J. Graph Theory.

[3]  Norma Zagaglia Salvi,et al.  Structural and enumerative properties of the Fibonacci cubes , 2002, Discret. Math..

[4]  Sandi Klavzar,et al.  On subgraphs of Cartesian product graphs , 2002, Discret. Math..

[5]  Jie Wu Extended Fibonacci Cubes , 1997, IEEE Trans. Parallel Distributed Syst..

[6]  Bostjan Bresar On the Natural Imprint Function of a Graph , 2002, Eur. J. Comb..

[7]  Wen-Jing Hsu,et al.  Generalized fibonacci cubes are mostly hamiltonian , 1994, J. Graph Theory.

[8]  Iztok Peterin Characterizing Flag Graphs and Induced Subgraphs of Cartesian Product Graphs , 2004, Order.

[9]  Bostjan Bresar On subgraphs of Cartesian product graphs and S-primeness , 2000, Electron. Notes Discret. Math..

[10]  Claude Tardif,et al.  A fixed box theorem for the cartesian product of graphs and metric spaces , 1997, Discret. Math..

[11]  Sandi Klavzar On median nature and enumerative properties of Fibonacci-like cubes , 2005, Discret. Math..

[12]  Boštjan Brešara,et al.  - graceful labelings of partial cubes , 2006 .

[13]  Marc Chastand,et al.  Fiber-complemented graphs -- I: structure and invariant subgraphs , 2001, Discret. Math..

[14]  Boštjan Breš On subgraphs of Cartesian product graphs and S-primeness , 2000 .

[15]  Petra Zigert,et al.  FIBONACCI CUBES ARE THE RESONANCE GRAPHS OF FIBONACCENES , 2003 .

[16]  Vo D. Chepoi,et al.  Isometric subgraphs of Hamming graphs and d-convexity , 1988 .

[17]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[18]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[19]  Sandi Klavar On median nature and enumerative properties of Fibonacci-like cubes , 2005 .

[20]  Karen L. Collins,et al.  Retracts of box products with odd‐angulated factors , 2007, J. Graph Theory.

[21]  David Eppstein The lattice dimension of a graph , 2005, Eur. J. Comb..

[22]  Norma Zagaglia Salvi,et al.  Observability of the extended Fibonacci cubes , 2003, Discret. Math..

[23]  V. G. Vizing The cartesian product of graphs , 1963 .

[24]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[25]  R. Graham,et al.  Isometric embeddings of graphs. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. H. Lamprey,et al.  A new concept of primeness in graphs , 1981, Networks.

[27]  Aleksander Vesel,et al.  Fast Recognition of Fibonacci Cubes , 2007, Algorithmica.

[28]  Emanuele Munarini,et al.  On the Lucas cubes , 2001 .