Efficient trajectory joins using symbolic representations

Efficiently and accurately discovering similarities among moving object trajectories is a difficult problem that appears in many spatiotemporal applications. In this paper we consider how to efficiently evaluate trajectory joins, i.e., how to identify all pairs of similar trajectories between two datasets. Our approach represents an object trajectory as a sequence of symbols (i.e., a string). Based on special lower-bounding distances between two strings, we propose a pruning heuristic for reducing the number of trajectory pairs that need to be examined. Furthermore, we present an indexing scheme designed to support efficient evaluation of string similarities in secondary storage. Through a comprehensive experimental evaluation we present the advantages of the proposed techniques.

[1]  H. Gunadhi,et al.  Query processing algorithms for temporal intersection joins , 1991, [1991] Proceedings. Seventh International Conference on Data Engineering.

[2]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[3]  Ming-Ling Lo,et al.  Spatial joins using seeded trees , 1994, SIGMOD '94.

[4]  David J. DeWitt,et al.  Partition based spatial-merge join , 1996, SIGMOD '96.

[5]  Ming-Ling Lo,et al.  Spatial hash-joins , 1996, SIGMOD '96.

[6]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[7]  Nick Koudas,et al.  Size separation spatial join , 1997, SIGMOD '97.

[8]  Sridhar Ramaswamy,et al.  Scalable Sweeping-Based Spatial Join , 1998, VLDB.

[9]  Hanan Samet,et al.  Incremental distance join algorithms for spatial databases , 1998, SIGMOD '98.

[10]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[11]  Michel Scholl,et al.  A Performance Evaluation of Spatial Join Processing Strategies , 1999, SSD.

[12]  Christos Faloutsos,et al.  Fast Time Sequence Indexing for Arbitrary Lp Norms , 2000, VLDB.

[13]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[14]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[15]  Eamonn J. Keogh,et al.  A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases , 2000, PAKDD.

[16]  Divyakant Agrawal,et al.  Storage and Retrieval of Moving Objects , 2001, Mobile Data Management.

[17]  Dimitrios Gunopulos,et al.  Indexing Animated Objects Using Spatiotemporal Access Methods , 2001, IEEE Trans. Knowl. Data Eng..

[18]  Yufei Tao,et al.  MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries , 2001, VLDB.

[19]  Dimitris Papadias,et al.  Multiway spatial joins , 2001, ACM Trans. Database Syst..

[20]  Dimitrios Gunopulos,et al.  Efficient aggregation over objects with extent , 2002, PODS '02.

[21]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.

[22]  Dieter Pfoser Indexing the Trajectories of Moving Objects , 2002 .

[23]  Dimitrios Gunopulos,et al.  Efficient Indexing of Spatiotemporal Objects , 2002, EDBT.

[24]  Oscar H. Ibarra,et al.  Trajectory queries and octagons in moving object databases , 2002, CIKM '02.

[25]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[26]  Dimitris Papadias,et al.  Slot Index Spatial Join , 2003, IEEE Trans. Knowl. Data Eng..

[27]  Dimitrios Gunopulos,et al.  Indexing multi-dimensional time-series with support for multiple distance measures , 2003, KDD '03.

[28]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[29]  Jing Shan,et al.  On Spatial-Range Closest-Pair Query , 2003, SSTD.

[30]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[31]  Lei Chen,et al.  Symbolic representation and retrieval of moving object trajectories , 2004, MIR '04.