Affine Invariant Geometry for Non-rigid Shapes
暂无分享,去创建一个
Ron Kimmel | Dan Raviv | R. Kimmel | D. Raviv
[1] Alain Trouvé,et al. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.
[2] Iasonas Kokkinos,et al. SHREC 2010: robust large-scale shape retrieval benchmark , 2010 .
[3] T. Funkhouser,et al. Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.
[4] Steven Haker,et al. Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.
[5] Edwin R. Hancock,et al. Clustering and Embedding Using Commute Times , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] Peter J. Olver,et al. A Survey of Moving Frames , 2004, IWMM/GIAE.
[7] Isaac Weiss,et al. Projective invariants of shapes , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.
[8] K. Nomizu. Affine Differential Geometry , 1994 .
[9] A. Gray,et al. Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition (Studies in Advanced Mathematics) , 2006 .
[10] Thomas Lewiner,et al. Affine-invariant curvature estimators for implicit surfaces , 2012, Comput. Aided Geom. Des..
[11] Iasonas Kokkinos,et al. Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[12] Ehud Rivlin,et al. Scale space semi-local invariants , 1997, Image Vis. Comput..
[13] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[14] Alexander M. Bronstein,et al. Affine-Invariant Photometric Heat Kernel Signatures , 2012, 3DOR@Eurographics.
[15] Leonidas J. Guibas,et al. Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.
[16] Guillermo Sapiro,et al. A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.
[17] A. Bronstein,et al. Shape Google : a computer vision approach to invariant shape retrieval , 2009 .
[18] Luc Van Gool,et al. Semi-differential invariants for nonplanar curves , 1992 .
[19] Reinhard Klette,et al. A Scale Invariant Surface Curvature Estimator , 2006, PSIVT.
[20] Alfred M. Bruckstein,et al. Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..
[21] Su Buqing,et al. Affine differential geometry , 1983 .
[22] G. Anastassiou,et al. Differential Geometry of Curves and Surfaces , 2014 .
[23] Alexander M. Bronstein,et al. Equi-affine Invariant Geometry for Shape Analysis , 2013, Journal of Mathematical Imaging and Vision.
[24] Jean-Michel Morel,et al. ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..
[25] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[26] Alexander M. Bronstein,et al. Affine-invariant geodesic geometry of deformable 3D shapes , 2010, Comput. Graph..
[27] Luc Van Gool,et al. Recognition of planar shapes under affine distortion , 2005, International Journal of Computer Vision.
[28] P. Thomas Fletcher,et al. Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.
[29] Leonidas J. Guibas,et al. Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.
[30] Fillia Makedon,et al. Surface Alignment of 3D Spherical Harmonic Models: Application to Cardiac MRI Analysis , 2005, MICCAI.
[31] Alfred M. Bruckstein,et al. Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.
[32] Wilhelm Blaschke,et al. Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III: Differentialgeometrie der Kreise und Kugeln , 2022 .
[33] Sen Wang,et al. High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps , 2008, International Journal of Computer Vision.
[34] P. Bérard,et al. Embedding Riemannian manifolds by their heat kernel , 1994 .
[35] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[36] Bruce Fischl,et al. Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.
[37] Xavier Pennec,et al. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.
[38] Luc Van Gool,et al. Semi-local projective invariants for the recognition of smooth plane curves , 1996, International Journal of Computer Vision.
[39] Stéphane Lafon,et al. Diffusion maps , 2006 .
[40] Ron Kimmel,et al. Scale Invariant Geometry for Nonrigid Shapes , 2013, SIAM J. Imaging Sci..
[41] Konrad Polthier,et al. Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.
[42] Ron Kimmel,et al. Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[43] Manfredo P. do Carmo,et al. Differential geometry of curves and surfaces , 1976 .
[44] Leonidas J. Guibas,et al. A concise and provably informative multi-scale signature based on heat diffusion , 2009 .
[45] Raif M. Rustamov,et al. Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .
[46] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[47] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..
[48] Timothy F. Cootes,et al. A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.
[49] Leonidas J. Guibas,et al. One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.
[50] Haibin Ling,et al. Using the inner-distance for classification of articulated shapes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[51] Luc Van Gool,et al. Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.
[52] Alfred M. Bruckstein,et al. On Similarity-Invariant Fairness Measures , 2005, Scale-Space.
[53] Alfred Gray,et al. Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .
[54] Alfred M. Bruckstein,et al. On differential invariants of planar curves and recognizing partially occluded planar shapes , 1995, Annals of Mathematics and Artificial Intelligence.
[55] Peter J. Olver,et al. Joint Invariant Signatures , 2001, Found. Comput. Math..
[56] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[57] Andrew Zisserman,et al. Geometric invariance in computer vision , 1992 .
[58] A. Ben Hamza,et al. Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.
[59] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[60] L. Gool,et al. Semi-differential invariants , 1992 .
[61] Jean-Michel Morel,et al. Integral and local affine invariant parameter and application to shape recognition , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[62] Ron Kimmel. Affine differential signatures for gray level images of planar shapes , 1996, Proceedings of 13th International Conference on Pattern Recognition.
[63] Alfred M. Bruckstein,et al. Similarity-invariant signatures for partially occluded planar shapes , 1992, International Journal of Computer Vision.
[64] Alexander M. Bronstein,et al. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes , 2010, CVPR 2011.
[65] Thomas A. Funkhouser,et al. Möbius voting for surface correspondence , 2009, ACM Trans. Graph..
[66] B. Nadler,et al. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.