Affine Invariant Geometry for Non-rigid Shapes

Shape recognition deals with the study geometric structures. Modern surface processing methods can cope with non-rigidity—by measuring the lack of isometry, deal with similarity or scaling—by multiplying the Euclidean arc-length by the Gaussian curvature, and manage equi-affine transformations—by resorting to the special affine arc-length definition in classical equi-affine differential geometry. Here, we propose a computational framework that is invariant to the full affine group of transformations (similarity and equi-affine). Thus, by construction, it can handle non-rigid shapes. Technically, we add the similarity invariant property to an equi-affine invariant one and establish an affine invariant pseudo-metric. As an example, we show how diffusion geometry can encapsulate the proposed measure to provide robust signatures and other analysis tools for affine invariant surface matching and comparison.

[1]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[2]  Iasonas Kokkinos,et al.  SHREC 2010: robust large-scale shape retrieval benchmark , 2010 .

[3]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[4]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[5]  Edwin R. Hancock,et al.  Clustering and Embedding Using Commute Times , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Peter J. Olver,et al.  A Survey of Moving Frames , 2004, IWMM/GIAE.

[7]  Isaac Weiss,et al.  Projective invariants of shapes , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  K. Nomizu Affine Differential Geometry , 1994 .

[9]  A. Gray,et al.  Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition (Studies in Advanced Mathematics) , 2006 .

[10]  Thomas Lewiner,et al.  Affine-invariant curvature estimators for implicit surfaces , 2012, Comput. Aided Geom. Des..

[11]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Ehud Rivlin,et al.  Scale space semi-local invariants , 1997, Image Vis. Comput..

[13]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[14]  Alexander M. Bronstein,et al.  Affine-Invariant Photometric Heat Kernel Signatures , 2012, 3DOR@Eurographics.

[15]  Leonidas J. Guibas,et al.  Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[16]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[17]  A. Bronstein,et al.  Shape Google : a computer vision approach to invariant shape retrieval , 2009 .

[18]  Luc Van Gool,et al.  Semi-differential invariants for nonplanar curves , 1992 .

[19]  Reinhard Klette,et al.  A Scale Invariant Surface Curvature Estimator , 2006, PSIVT.

[20]  Alfred M. Bruckstein,et al.  Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..

[21]  Su Buqing,et al.  Affine differential geometry , 1983 .

[22]  G. Anastassiou,et al.  Differential Geometry of Curves and Surfaces , 2014 .

[23]  Alexander M. Bronstein,et al.  Equi-affine Invariant Geometry for Shape Analysis , 2013, Journal of Mathematical Imaging and Vision.

[24]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  Alexander M. Bronstein,et al.  Affine-invariant geodesic geometry of deformable 3D shapes , 2010, Comput. Graph..

[27]  Luc Van Gool,et al.  Recognition of planar shapes under affine distortion , 2005, International Journal of Computer Vision.

[28]  P. Thomas Fletcher,et al.  Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.

[29]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[30]  Fillia Makedon,et al.  Surface Alignment of 3D Spherical Harmonic Models: Application to Cardiac MRI Analysis , 2005, MICCAI.

[31]  Alfred M. Bruckstein,et al.  Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[32]  Wilhelm Blaschke,et al.  Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III: Differentialgeometrie der Kreise und Kugeln , 2022 .

[33]  Sen Wang,et al.  High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps , 2008, International Journal of Computer Vision.

[34]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[35]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[36]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[37]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[38]  Luc Van Gool,et al.  Semi-local projective invariants for the recognition of smooth plane curves , 1996, International Journal of Computer Vision.

[39]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[40]  Ron Kimmel,et al.  Scale Invariant Geometry for Nonrigid Shapes , 2013, SIAM J. Imaging Sci..

[41]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[42]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[43]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[44]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[45]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[46]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[47]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[48]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[49]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[50]  Haibin Ling,et al.  Using the inner-distance for classification of articulated shapes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[51]  Luc Van Gool,et al.  Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.

[52]  Alfred M. Bruckstein,et al.  On Similarity-Invariant Fairness Measures , 2005, Scale-Space.

[53]  Alfred Gray,et al.  Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .

[54]  Alfred M. Bruckstein,et al.  On differential invariants of planar curves and recognizing partially occluded planar shapes , 1995, Annals of Mathematics and Artificial Intelligence.

[55]  Peter J. Olver,et al.  Joint Invariant Signatures , 2001, Found. Comput. Math..

[56]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[58]  A. Ben Hamza,et al.  Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.

[59]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[60]  L. Gool,et al.  Semi-differential invariants , 1992 .

[61]  Jean-Michel Morel,et al.  Integral and local affine invariant parameter and application to shape recognition , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[62]  Ron Kimmel Affine differential signatures for gray level images of planar shapes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[63]  Alfred M. Bruckstein,et al.  Similarity-invariant signatures for partially occluded planar shapes , 1992, International Journal of Computer Vision.

[64]  Alexander M. Bronstein,et al.  Affine-invariant diffusion geometry for the analysis of deformable 3D shapes , 2010, CVPR 2011.

[65]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[66]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.