Strategies for effectively visualizing 3D flow with volume LIC

This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding "halos" that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

[1]  David C. Banks,et al.  Illumination in diverse codimensions , 1994, SIGGRAPH.

[2]  Nelson L. Max,et al.  Direct volume visualization of three-dimensional vector fields , 1992, VVS.

[3]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.

[4]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[5]  K. Nakayama,et al.  Real world occlusion constraints and binocular rivalry , 1990, Vision Research.

[6]  Andrea J. van Doorn,et al.  Relief: pictorial and otherwise , 1995, Image Vis. Comput..

[7]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  Thomas Ertl,et al.  Line Integral Convolution on triangulated surfaces , 1997 .

[9]  John M. Seiner,et al.  Numerical Simulation of Mixing Enhancement in a Hot Supersonic Jet , 1997 .

[10]  Nelson L. Max,et al.  Visualizing 3D velocity fields near contour surfaces , 1994, Proceedings Visualization '94.

[11]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[12]  Kwan-Liu Ma,et al.  Visualizing vector fields using line integral convolution and dye advection , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[13]  Hans-Christian Hege,et al.  Fast Display of Illuminated Field Lines , 1997, IEEE Trans. Vis. Comput. Graph..

[14]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[15]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[16]  J. Gibson The perception of the visual world , 1951 .

[17]  James T. Todd,et al.  Ordinal structure in the visual perception and cognition of smoothly curved surfaces. , 1989 .

[18]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[19]  Ken-ichi Anjyo,et al.  A simple method for extracting the natural beauty of hair , 1992, SIGGRAPH.

[20]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[21]  B Rogers,et al.  Motion Parallax as an Independent Cue for Depth Perception , 1979, Perception.

[22]  Michael F. Cohen,et al.  Automatic illustration of 3D geometric models: lines , 1990, I3D '90.

[23]  H. Hege,et al.  Fast Line Integral Convolution for Arbitrary Surfaces in 3D , 1997, VisMath.

[24]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[25]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[26]  A Yonas,et al.  Development of Sensitivity to Information Provided by Cast Shadows in Pictures , 1978, Perception.