Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia

Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10−54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10−19). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a non-Hodgkin-type B cell lymphoma. Here, the authors identify two risk loci for WM/LPL in a two-stage GWAS involving a family-oversampling approach and provide evidence for a functional role of the non-coding SNP rs116446171.

Paolo Vineis | Peter Kraft | Bin Zhu | Nilanjan Chatterjee | Nathaniel Rothman | Akinyemi I Ojesina | Mark P Purdue | Anthony Staines | Kenneth Offit | Amy Hutchinson | Stephen J Chanock | Alexandra Nieters | Charles Lawrence | Qing Lan | Neil E Caporaso | Paolo Boffetta | Tongzhang Zheng | Edward Giovannucci | Nikolaus Becker | Christine Mayr | Meredith Yeager | Huihuang Yan | Mads Melbye | Wendy Cozen | Henrik Hjalgrim | Federico Canzian | Jacques Riby | Kari E North | Paul Brennan | Joseph Vijai | Bengt Glimelius | Sonja I Berndt | James R Cerhan | Andrew L Feldman | Jacqueline Clavel | Lesley F Tinker | J. Cerhan | C. Mayr | N. Rothman | S. Chanock | P. Vineis | R. Vermeulen | A. Feldman | H. Adami | N. Chatterjee | P. Kraft | K. Offit | S. Sanjosé | M. Yeager | Zhaoming Wang | A. Hutchinson | E. Giovannucci | C. Skibola | E. Weiderpass | L. Burdette | Charles C. Chung | S. Berndt | P. Brennan | S. Slager | J. Vijai | K. North | P. Boffetta | Ju-Hyun Park | F. Canzian | A. I. Ojesina | Q. Lan | M. Melbye | P. Bracci | R. Severson | B. Zhu | A. Staines | S. Ansell | J. Riby | N. Caporaso | E. Brown | H. Hjalgrim | Huihuang Yan | L. Morton | B. Glimelius | B. Hicks | R. Travis | N. Becker | W. Cozen | B. Birmann | B. Bassig | M. Purdue | L. Conde | T. Zheng | Yawei Zhang | L. Goldin | Y. Benavente | A. Novak | Charles Lawrence | M. McMaster | Zhaoming Wang | Lynn R Goldin | Susan L Slager | Paige M Bracci | Elisabete Weiderpass | Charles C Chung | Laurie Burdette | W Ryan Diver | Hans-Olov Adami | Yawei Zhang | Anne J Novak | Stephen M Ansell | A. Nieters | A. Monnereau | Lauren R. Teras | K. E. Smedby | C. Vajdic | B. Link | L. Tinker | J. Clavel | Richard K Severson | Silvia de Sanjose | Lucia Conde | Alain Monnereau | Rebecca Montalvan | Ann Maria | Yolanda Benavente | Lenka Foretova | Marc Maynadie | James McKay | Alex Smith | Lindsay M Morton | Ruth C Travis | Jonathan N Hofmann | Christine F Skibola | Elizabeth E Brown | Ju-Hyun Park | Brian K Link | Rebecca D Jackson | J. Hofmann | Lauren R Teras | Roel C H Vermeulen | Claire M Vajdic | Karin E Smedby | Brenda M Birmann | Mary L McMaster | Jianqing Zhang | Shengchao Alfred Li | Geffen Kleinstern | Mervin M Fansler | Belynda D Hicks | Caroline M Besson | Nisha Pradhan | Bryan A Bassig | Shengchao A Li | Charles E. Lawrence | G. Kleinstern | Nisha Pradhan | C. Besson | Jianqing Zhang | Ann Maria | Rebecca Montalvan | Alex Smith | Mervin M. Fansler | M. Maynadie | R. Jackson | L. Foretova | W. Diver | J. Mckay | P. Brennan | T. Zheng | Laurie A. Burdette | E. Brown | R. Jackson | Silvia de Sanjosé

[1]  Howard Y. Chang,et al.  DDX5 and its associated lncRNA Rmrp modulate Th17 cell effector functions , 2015, Nature.

[2]  N. Harris,et al.  MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. , 2012, The New England journal of medicine.

[3]  Douglas F. Easton,et al.  Polygenic susceptibility to breast cancer and implications for prevention , 2002, Nature Genetics.

[4]  M. White,et al.  RalB GTPase-Mediated Activation of the IκB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival , 2006, Cell.

[5]  Paolo Vineis,et al.  Genome-wide association study identifies multiple susceptibility loci for diffuse large B-cell lymphoma , 2014, Nature Genetics.

[6]  J. Miguel,et al.  Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals , 2007, Leukemia.

[7]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[8]  K. Hemminki,et al.  Familial aggregation of lymphoplasmacytic lymphoma with non-Hodgkin lymphoma and other neoplasms , 2005, Leukemia.

[9]  David I. Smith,et al.  Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. , 2011, Blood.

[10]  R. Pfeiffer,et al.  Differential characteristics of Waldenström macroglobulinemia according to patterns of familial aggregation. , 2010, Blood.

[11]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[12]  J. Cerhan,et al.  Genetic susceptibility to diffuse large B‐cell lymphoma in a pooled study of three Eastern Asian populations , 2015, European journal of haematology.

[13]  Chia-Cheng Yu,et al.  MicroRNA-324 in Human Cancer: miR-324-5p and miR-324-3p Have Distinct Biological Functions in Human Cancer. , 2016, Anticancer research.

[14]  N. Gray,et al.  A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. , 2013, Blood.

[15]  Julie L. Yang,et al.  Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression , 2013, Genes & development.

[16]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[17]  J. Witte,et al.  Two Susceptibility Loci Identified for Prostate Cancer Aggressiveness , 2015, Nature Communications.

[18]  Jian Gu,et al.  Mosaic loss of chromosome Y is associated with common variation near TCL1A , 2016, Nature Genetics.

[19]  J. Mages,et al.  DUSP Meet Immunology: Dual Specificity MAPK Phosphatases in Control of the Inflammatory Response1 , 2006, The Journal of Immunology.

[20]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[21]  Adele Seniori Costantini,et al.  InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. , 2010, Blood.

[22]  Alan M. Kwong,et al.  A reference panel of 64,976 haplotypes for genotype imputation , 2015, Nature Genetics.

[23]  J. Cerhan,et al.  Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. , 2014, Journal of the National Cancer Institute. Monographs.

[24]  Michael A. Teitell,et al.  Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[26]  J. Laine,et al.  The protooncogene TCL1 is an Akt kinase coactivator. , 2000, Molecular cell.

[27]  G. Barber,et al.  STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity , 2009, Nature.

[28]  J. Koshiol,et al.  Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenstrom macroglobulinemia. , 2010, Journal of the National Cancer Institute.

[29]  A. Viale,et al.  Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies , 2013, PLoS genetics.

[30]  D. Krappmann,et al.  Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies , 2014, Oncogene.

[31]  M. Stern,et al.  The TCL1A Oncoprotein Interacts Directly with the NF-κB Inhibitor IκB , 2009, PloS one.

[32]  S. Gerson,et al.  Chemoselection of allogeneic HSC after murine neonatal transplantation without myeloablation or post-transplant immunosuppression. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[33]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[34]  M. White,et al.  Ral GTPases and cancer: linchpin support of the tumorigenic platform , 2008, Nature Reviews Cancer.

[35]  A. Brooks-Wilson,et al.  Medical history, lifestyle, family history, and occupational risk factors for lymphoplasmacytic lymphoma/Waldenström's macroglobulinemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. , 2014, Journal of the National Cancer Institute. Monographs.

[36]  Christine Mayr,et al.  Widespread intronic polyadenylation diversifies immune cell transcriptomes , 2018, Nature Communications.

[37]  Mark I McCarthy,et al.  Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.

[38]  David F. Kashatus Ral GTPases in tumorigenesis: emerging from the shadows. , 2013, Experimental cell research.

[39]  U. Klein,et al.  Article Transcriptional Regulation of Germinal Center B and Plasma Cell Fates by Dynamical Control of Irf4 , 2022 .

[40]  L. Peterson,et al.  Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia. , 2013, American journal of clinical pathology.

[41]  Nilanjan Chatterjee,et al.  Estimation of effect size distribution from genome-wide association studies and implications for future discoveries , 2010, Nature Genetics.

[42]  Paolo Vineis,et al.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia , 2013, Nature Genetics.

[43]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[44]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[45]  C. Mayr Regulation by 3'-Untranslated Regions. , 2017, Annual review of genetics.

[46]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[47]  Ralf Schmidt,et al.  A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation , 2015, bioRxiv.

[48]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[49]  Dan Xie,et al.  Extensive Variation in Chromatin States Across Humans , 2013, Science.

[50]  K. Honda,et al.  Negative regulation of Toll-like-receptor signaling by IRF-4. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Koshiol,et al.  Chronic immune stimulation and subsequent Waldenström macroglobulinemia. , 2008, Archives of internal medicine.

[52]  R. Vemuganti,et al.  MicroRNA miR-324-3p Induces Promoter-Mediated Expression of RelA Gene , 2013, PloS one.

[53]  R. Hardy,et al.  A role for IRF4 in the development of CLL. , 2013, Blood.

[54]  U. Klein,et al.  The diverse roles of IRF4 in late germinal center B‐cell differentiation , 2012, Immunological reviews.

[55]  Stephen Chanock,et al.  Population Substructure and Control Selection in Genome-Wide Association Studies , 2008, PloS one.

[56]  Jonathan M. Cairns,et al.  Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.

[57]  S. Swerdlow WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues , 2017 .

[58]  F. Slack,et al.  The Inescapable Influence of Noncoding RNAs in Cancer. , 2015, Cancer research.

[59]  Y. Sekine,et al.  Regulation of STAT3-mediated signaling by LMW-DSP2 , 2006, Oncogene.

[60]  S. Hodge,et al.  Familial cosegregation of rare genetic variants with disease in complex disorders , 2012, European Journal of Human Genetics.

[61]  J. Cerhan,et al.  2016 US lymphoid malignancy statistics by World Health Organization subtypes , 2016, CA: a cancer journal for clinicians.

[62]  M. Björkholm,et al.  Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a population-based study in Sweden. , 2008, Blood.

[63]  Stefan Boehringer,et al.  Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families. , 2006, American journal of human genetics.

[64]  Burton B. Yang,et al.  MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression , 2007, Proceedings of the National Academy of Sciences.

[65]  Daniel R. Caffrey,et al.  A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes , 2013, Science.

[66]  N. Munshi,et al.  MYD88-independent growth and survival effects of Sp1 transactivation in Waldenstrom macroglobulinemia. , 2014, Blood.

[67]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[68]  P. Morel,et al.  TCL1 expression patterns in Waldenström macroglobulinemia , 2016, Modern Pathology.

[69]  Y. Pekarsky,et al.  Tcl1 interacts with Atm and enhances NF-κB activation in hematologic malignancies. , 2012, Blood.