Complexity Classification of Local Hamiltonian Problems

The calculation of ground-state energies of physical systems can be formalised as the k-local Hamiltonian problem, which is the natural quantum analogue of classical constraint satisfaction problems. One way of making the problem more physically meaningful is to restrict the Hamiltonian in question by picking its terms from a fixed set S. Examples of such special cases are the Heisenberg and Ising models from condensed-matter physics. In this work we characterise the complexity of this problem for all 2-local qubit Hamiltonians. Depending on the subset S, the problem falls into one of the following categories: in P, NP-complete, polynomial-time equivalent to the Ising model with transverse magnetic fields, or QMA-complete. The third of these classes contains NP and is contained within StoqMA. The characterisation holds even if S does not contain any 1-local terms, for example, we prove for the first time QMA-completeness of the Heisenberg and XY interactions in this setting. If S is assumed to contain all 1-local terms, which is the setting considered by previous work, we have a characterisation that goes beyond 2-local interactions: for any constant k, all k-local qubit Hamiltonians whose terms are picked from a fixed set S correspond to problems either in P, polynomial-time equivalent to the Ising model with transverse magnetic fields, or QMA-complete. These results are a quantum analogue of Schaefer's dichotomy theorem for boolean constraint satisfaction problems.

[1]  Laura Mančinska,et al.  Characterization of universal two-qubit hamiltonian , 2011 .

[2]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[3]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[4]  Keith C. Hannabuss An introduction to quantum theory , 1997 .

[5]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[6]  Daniel Nagaj,et al.  Quantum 3-SAT Is QMA1-Complete , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[7]  Debbie W. Leung,et al.  Characterization of universal two-qubit Hamiltonians , 2011, Quantum Inf. Comput..

[8]  Andreas Voigt,et al.  The spin- 1/2 Heisenberg star with frustration: numerical versus exact results , 1994 .

[9]  Matthew B Hastings,et al.  Topological order at nonzero temperature. , 2011, Physical review letters.

[10]  Matthias Christandl,et al.  Quantum computational complexity of the N-representability problem: QMA complete. , 2007, Physical review letters.

[11]  E. Lieb,et al.  Ordering Energy Levels of Interacting Spin Systems , 1962 .

[12]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[13]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  M. Hsieh,et al.  An Explicit Universal Gate-Set for Exchange-Only Quantum Computation , 2003, Quantum Inf. Process..

[15]  P. Love,et al.  Quantum-Merlin-Arthur-complete problems for stoquastic Hamiltonians and Markov matrices , 2009, 0905.4755.

[16]  Adam D. Bookatz QMA-complete problems , 2012, Quantum Inf. Comput..

[17]  Haldane,et al.  Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange. , 1988, Physical review letters.

[18]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[19]  Dorit Aharonov,et al.  On the Complexity of Commuting Local Hamiltonians, and Tight Conditions for Topological Order in Such Systems , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[20]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[21]  Jeroen van den Brink,et al.  An intrinsic limit to quantum coherence due to spontaneous symmetry breaking. , 2004, Physical review letters.

[22]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[23]  F. Verstraete,et al.  Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.

[24]  M. Hastings,et al.  On Complexity of the Quantum Ising Model , 2014, 1410.0703.

[25]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[26]  D. DiVincenzo,et al.  Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions. , 2008, Physical review letters.

[27]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Andrew M. Childs,et al.  Complexity of the XY antiferromagnet at fixed magnetization , 2016, Quantum Inf. Comput..

[29]  Sergey Bravyi,et al.  Efficient algorithm for a quantum analogue of 2-SAT , 2006, quant-ph/0602108.

[30]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[31]  W. Dür,et al.  Entanglement capabilities of non–local Hamiltonians , .

[32]  G. Thompson Normal forms for skew-symmetric matrices and Hamiltonian systems with first integrals linear in momenta , 1988 .

[33]  T. Cubitt,et al.  Simple universal models capture all classical spin physics , 2014, Science.

[34]  J. Biamonte Non−perturbative k−body to two−body commuting conversion Hamiltonians and embedding problem instances into Ising spins , 2008, 0801.3800.

[35]  Chanchal K. Majumdar,et al.  On Next‐Nearest‐Neighbor Interaction in Linear Chain. II , 1969 .

[36]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[37]  Andrew M. Childs,et al.  The Bose-Hubbard Model is QMA-complete , 2013, Theory Comput..

[38]  Douglas J. Klein,et al.  Exact ground states for a class of antiferromagnetic Heisenberg models with short-range interactions , 1982 .

[39]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[40]  Norbert Schuch,et al.  Complexity of commuting Hamiltonians on a square lattice of qubits , 2011, Quantum Inf. Comput..

[41]  David P. DiVincenzo,et al.  Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..

[42]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[43]  Barbara M. Terhal,et al.  Merlin-Arthur Games and Stoquastic Complexity , 2006, ArXiv.

[44]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[45]  J. Cirac,et al.  Entanglement capabilities of nonlocal Hamiltonians. , 2000, Physical review letters.

[46]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[47]  Charles H. Bennett,et al.  Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.

[48]  Vladimir E. Korepin,et al.  XXX Spin Chain: from Bethe Solution to Open Problems , 2007, cond-mat/0701491.

[49]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[50]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[51]  Mikhail N. Vyalyi,et al.  Commutative version of the local Hamiltonian problem and common eigenspace problem , 2005, Quantum Inf. Comput..

[52]  S. Dusuel,et al.  Entanglement entropy in collective models , 2006 .

[53]  Shastry,et al.  Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. , 1988, Physical review letters.

[54]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[55]  Ashley Montanaro,et al.  Complexity Classification of Local Hamiltonian Problems , 2016, SIAM J. Comput..

[56]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[57]  Toby S. Cubitt,et al.  Simple universal models capture all spin physics , 2014 .

[58]  Sergey Bravyi,et al.  Monte Carlo simulation of stoquastic Hamiltonians , 2014, Quantum Inf. Comput..

[59]  Ashwin Nayak,et al.  Interacting boson problems can be QMA hard. , 2009, Physical review letters.

[60]  Didier Sornette,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[61]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[62]  Peter Jonsson,et al.  Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights , 2000, Theor. Comput. Sci..

[63]  Yudong Cao,et al.  Perturbative gadgets without strong interactions , 2014, Quantum Inf. Comput..

[64]  David P. Williamson,et al.  A complete classification of the approximability of maximization problems derived from Boolean constraint satisfaction , 1997, STOC '97.

[65]  Dave Bacon,et al.  The k-local Pauli Commuting Hamiltonians Problem is in P , 2012, 1203.3906.