Electrochemical performance of highly active ceramic symmetrical electrode La0.3Sr0.7Ti0.3Fe0.7O3-δ-CeO2 for reversible solid oxide cells

[1]  Ning Wang,et al.  Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3-δ oxygen electrode for intermediate temperature solid oxide electrolysis cells , 2016 .

[2]  S. Jiang,et al.  Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes? , 2015, Physical chemistry chemical physics : PCCP.

[3]  V. Birss,et al.  CO/CO2 Study of High Performance La0.3Sr0.7Fe0.7Cr0.3O3–δ Reversible SOFC Electrodes , 2015 .

[4]  R. Lan,et al.  Conductivity and redox stability of perovskite oxide SrFe1-xTixO3-δ (x ≤ 0.3) , 2015 .

[5]  Sun-Ju Song,et al.  La2NiO4+δ as oxygen electrode in reversible solid oxide cells , 2015 .

[6]  E. Morán,et al.  High performance La0.3Ca0.7Cr0.3Fe0.7O3−δ air electrode for reversible solid oxide fuel cell applications , 2015 .

[7]  D. Dong,et al.  A composite cathode based on scandium-doped chromate for direct high-temperature steam electrolysis in a symmetric solid oxide electrolyzer , 2015 .

[8]  Mogens Bjerg Mogensen,et al.  High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. , 2014, Chemical reviews.

[9]  Qi Zhou,et al.  Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis. , 2014, Dalton transactions.

[10]  Yong Zhang,et al.  Reversibly in-situ anchoring copper nanocatalyst in perovskite titanate cathode for direct high-temperature steam electrolysis , 2014 .

[11]  H. Hwang,et al.  Methane oxidation behavior over La0.08Sr0.92Fe0.20Ti0.80O3−δ perovskite oxide for SOFC anode , 2014 .

[12]  M. Li,et al.  Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser , 2013 .

[13]  Shanshan Xu,et al.  Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3 − δ electrode , 2013 .

[14]  Dong Ding,et al.  Development of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode with an improved stability via La0.8Sr0.2MnO3-film impregnation , 2013 .

[15]  D. Dong,et al.  Composite fuel electrode La(0.2)Sr(0.8)TiO(3-δ)-Ce(0.8)Sm(0.2)O(2-δ) for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. , 2012, Physical chemistry chemical physics : PCCP.

[16]  Q. Ma,et al.  Comparison of Y and La-substituted SrTiO3 as the anode materials for SOFCs , 2012 .

[17]  M. Gazda,et al.  Structural and electrical properties of Sr(Ti, Fe)O3-δ materials for SOFC cathodes , 2012, Journal of Electroceramics.

[18]  S. Gamble Fabrication–microstructure–performance relationships of reversible solid oxide fuel cell electrodes–review , 2011 .

[19]  Kevin Huang,et al.  Synthesis and characterizations of A-site deficient perovskite Sr0.9Ti0.8-xGaxNb0.2O3 , 2011 .

[20]  Meilin Liu,et al.  High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process , 2010 .

[21]  Chenghao Yang,et al.  Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells , 2010 .

[22]  A. Virkar Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells , 2010 .

[23]  J. M. Serra,et al.  IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites , 2008 .

[24]  A. Petric,et al.  Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells , 2002 .

[25]  E. P. Murray,et al.  Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes , 2002 .

[26]  Tohru Kato,et al.  Polarization Behavior of High Temperature Solid Oxide Electrolysis Cells (SOEC) , 1997 .