The universal structure of local algebras

It is shown that a few physically significant conditions fix the global structure of the local algebras appearing in quantum field theory: it is isomorphic to that of ℜ where ℜ is the unique hyperfinite factor of typeIII1 and the center of the respective algebra. The argument is based on results in [1, 2] relating to the type of the local algebras and an improvement of an argument in [3] concerning the “split property.”

[1]  R. Longo Algebraic and modular structure of von Neumann algebras of physics , 1982 .

[2]  Kenneth G. Wilson,et al.  Renormalization Group and Strong Interactions , 1971 .

[3]  A. Jaffe HIGH-ENERGY BEHAVIOR IN QUANTUM FIELD THEORY. I. STRICTLY LOCALIZABLE FIELDS , 1967 .

[4]  K. Fredenhagen On the modular structure of local algebras of observables , 1985 .

[5]  A. Wightman,et al.  PCT, spin and statistics, and all that , 1964 .

[6]  Bert Schroer,et al.  THE POSTULATES OF QUANTUM FIELD THEORY , 1962 .

[7]  E. Wichmann,et al.  On the connection between quantum fields and von Neumann algebras of local operators , 1986 .

[8]  D. Buchholz,et al.  On the nuclearity condition for massless fields , 1987 .

[9]  S. Sakai C*-Algebras and W*-Algebras , 1971 .

[10]  Roberto Longo,et al.  Standard and split inclusions of von Neumann algebras , 1984 .

[11]  H. Reeh,et al.  Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern , 1961 .

[12]  U. Haagerup Conne’s bicentralizer problem and uniqueness of the injective factor of type III1 , 1987 .

[13]  Eyvind H. Wichmann,et al.  Causal independence and the energy-level density of states in local quantum field theory , 1986 .

[14]  Sergio Doplicher,et al.  Local aspects of superselection rules , 1982 .

[15]  E. Wichmann,et al.  ON THE DUALITY CONDITION FOR QUANTUM FIELDS , 1976 .

[16]  S. Weinberg High-Energy Behavior in Quantum Field Theory , 1960 .

[17]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.