On the ill-posedness of the Prandtl equation
暂无分享,去创建一个
[1] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[2] W. Tollmien,et al. Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .
[3] Tosio Kato. Perturbation theory for linear operators , 1966 .
[4] Russel E. Caflisch,et al. Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .
[5] E Weinan,et al. BLOWUP OF SOLUTIONS OF THE UNSTEADY PRANDTL'S EQUATION , 1997 .
[6] Russel E. Caflisch,et al. Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .
[7] E. Grenier. On the derivation of homogeneous hydrostatic equations , 1999 .
[8] V. N. Samokhin,et al. Mathematical Models in Boundary Layer Theory , 1999 .
[9] Yann Brenier,et al. Homogeneous hydrostatic flows with convex velocity profiles , 1999 .
[10] E Weinan,et al. Boundary Layer Theory and the Zero-Viscosity Limit of the Navier-Stokes Equation , 2000 .
[11] Emmanuel Grenier,et al. On the nonlinear instability of Euler and Prandtl equations , 2000 .
[12] John K. Hunter,et al. Singularity Formation and Instability in the Unsteady Inviscid and Viscous Prandtl Equations , 2003 .
[13] Marco Cannone,et al. Well-Posedness of the Boundary Layer Equations , 2003, SIAM J. Math. Anal..
[14] Zhouping Xin,et al. On the global existence of solutions to the Prandtl's system , 2004 .