Sensing with toroidal metamaterial

Localized electromagnetic excitation in the form of toroidal dipoles has recently been observed in metamaterial systems. The origin of the toroidal dipole lies in the currents flowing on the surface of a torus. Thus, the exotic toroidal excitations play an important role in determining the optical properties of a system. Toroidal dipoles also contribute towards enabling high quality factor subwavelength resonances in metamaterial systems which could be an excellent platform for probing the light matter interaction. Here, we demonstrate sensing with toroidal resonance in a two-dimensional terahertz metamaterial in which a pair of mirrored asymmetric Fano resonators possesses anti-aligned magnetic moments at an electromagnetic resonance that gives rise to a toroidal dipole. Our proof of concept demonstration opens up an avenue to explore the interaction of matter with toroidal multipoles that could have strong applications in the sensing of dielectrics and biomolecules.

[1]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[2]  Xiang Zhang,et al.  Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .

[3]  L. Wong,et al.  Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. , 2011, Nano letters.

[4]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[5]  N. Zheludev,et al.  Superconductor photonics , 2014, Nature Photonics.

[6]  Eleftherios N. Economou,et al.  Negative‐Index Materials: New Frontiers in Optics , 2006 .

[7]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[8]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[9]  Willie J Padilla,et al.  Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications , 2010 .

[10]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[11]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[12]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[13]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[14]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[15]  C. Soukoulis,et al.  Low-loss and high-Q planar metamaterial with toroidal moment , 2013 .

[16]  Ranjan Singh,et al.  Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials , 2016 .

[17]  Dexin Ye,et al.  Microwave gain medium with negative refractive index , 2014, Nature Communications.

[18]  Willie J Padilla,et al.  Metamaterials on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency , 2010 .

[19]  Manoj Gupta,et al.  Toroidal versus Fano Resonances in High Q planar THz Metamaterials , 2016 .

[20]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[21]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[22]  Extremely high Q -factor metamaterials due to anapole excitation , 2016, 1608.03233.

[23]  R. Morandotti,et al.  Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances. , 2014, Physical review letters.

[24]  N I Zheludev,et al.  Electromagnetic toroidal excitations in matter and free space. , 2016, Nature materials.

[25]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[26]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[27]  Carsten Rockstuhl,et al.  The Fano Resonance in Symmetry Broken Terahertz Metamaterials , 2013, IEEE Transactions on Terahertz Science and Technology.

[28]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[29]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[30]  Manoj Gupta,et al.  Sharp Toroidal Resonances in Planar Terahertz Metasurfaces , 2016, Advanced materials.

[31]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[32]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[33]  I. Al-Naib,et al.  Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces , 2014, 1406.7194.

[34]  V. Shalaev Optical negative-index metamaterials , 2007 .

[35]  C. Soci,et al.  High‐Q Whispering‐Gallery‐Mode‐Based Plasmonic Fano Resonances in Coupled Metallic Metasurfaces at Near Infrared Frequencies , 2016 .

[36]  Marco Rahm,et al.  Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range , 2012, 1203.4527.

[37]  Tao Chen,et al.  Metamaterials Application in Sensing , 2012, Sensors.

[38]  S. Maier,et al.  Lattice resonances in antenna arrays for liquid sensing in the terahertz regime. , 2011, Optics express.

[39]  Nikolay I. Zheludev,et al.  Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials , 2014 .

[40]  Hyunyong Choi,et al.  Ultrafast refractive index control of a terahertz graphene metamaterial , 2013, Scientific Reports.

[41]  J Li,et al.  Distinguishing octane grades in gasoline using terahertz metamaterials. , 2012, Applied optics.

[42]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[43]  Philippe Guyot-Sionnest,et al.  Dielectric Sensing with Deposited Gold Bipyramids , 2008 .

[44]  David L. Kaplan,et al.  Metamaterials on Paper as a Sensing Platform , 2011, Advanced materials.

[45]  Carsten Rockstuhl,et al.  Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials , 2012 .

[46]  D. P. Tsai,et al.  Toroidal Dipolar Response in a Metamaterial , 2010, Science.