On the numerical integration of trimmed isogeometric elements

Abstract A numerical algorithm is proposed to construct efficient quadrature rules for trimmed isogeometric elements of arbitrary shape and topology as part of the standard finite element preprocessing step. The constructed integration rule is unique to an element and it is considered to be optimal in the sense that the final quadrature points and weights satisfy the moment fitting equations within the trimmed domain up to a predefined tolerance. The resulting quadrature points are in the interior of the trimmed domain and the positivity of the weights is preserved. The accuracy and efficiency of the quadrature scheme are assessed and compared to traditionally employed integration techniques. Results indicate that the proposed integration rules are more precise and inhibit the proliferation of quadrature points observed in competing approaches. Selected problems of elastostatics, elastodynamics, and elasto-plastic dynamics are used to further demonstrate the validity and efficacy of the method.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[3]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[4]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[5]  Ruben Sevilla,et al.  Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM , 2011 .

[6]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[7]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[8]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[9]  William H. Press,et al.  Numerical recipes , 1990 .

[10]  Jun-Hai Yong,et al.  A new algorithm for Boolean operations on general polygons , 2005, Comput. Graph..

[11]  Klaus Höllig,et al.  Introduction to the Web-method and its applications , 2005, Adv. Comput. Math..

[12]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[13]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[14]  P. Klingenberg,et al.  Thomas D. Brock: Biology of Microorganisms. 737 Seiten, zahlreiche, z. T. farbige Abb., Prentice-Hall, Inc. Englewood Cliffs, New Jersey 1970. Preis: 130,— s , 1971 .

[15]  Kai Hormann,et al.  The point in polygon problem for arbitrary polygons , 2001, Comput. Geom..

[16]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[17]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[18]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[19]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[20]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[21]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[22]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[23]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[24]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[25]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[26]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[27]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[28]  Jean B. Lasserre,et al.  Integration on a convex polytope , 1998 .

[29]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[30]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[31]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .