On the numerical integration of trimmed isogeometric elements
暂无分享,去创建一个
[1] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[2] Ulrich Reif,et al. Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..
[3] Ernst Rank,et al. Geometric modeling, isogeometric analysis and the finite cell method , 2012 .
[4] S. Wandzurat,et al. Symmetric quadrature rules on a triangle , 2003 .
[5] Ruben Sevilla,et al. Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM , 2011 .
[6] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[7] Roland Wüchner,et al. Isogeometric analysis of trimmed NURBS geometries , 2012 .
[8] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[9] William H. Press,et al. Numerical recipes , 1990 .
[10] Jun-Hai Yong,et al. A new algorithm for Boolean operations on general polygons , 2005, Comput. Graph..
[11] Klaus Höllig,et al. Introduction to the Web-method and its applications , 2005, Adv. Comput. Math..
[12] Y. Bazilevs,et al. Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .
[13] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[14] P. Klingenberg,et al. Thomas D. Brock: Biology of Microorganisms. 737 Seiten, zahlreiche, z. T. farbige Abb., Prentice-Hall, Inc. Englewood Cliffs, New Jersey 1970. Preis: 130,— s , 1971 .
[15] Kai Hormann,et al. The point in polygon problem for arbitrary polygons , 2001, Comput. Geom..
[16] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[17] M. Powell. A New Algorithm for Unconstrained Optimization , 1970 .
[18] Yuri Bazilevs,et al. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .
[19] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[20] Ernst Rank,et al. Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .
[21] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[22] James N. Lyness,et al. Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .
[23] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[24] Hyun-Jung Kim,et al. Isogeometric analysis for trimmed CAD surfaces , 2009 .
[25] Zydrunas Gimbutas,et al. A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..
[26] S. Timoshenko,et al. Theory of elasticity , 1975 .
[27] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[28] Jean B. Lasserre,et al. Integration on a convex polytope , 1998 .
[29] P. Silvester,et al. Symmetric Quadrature Formulae for Simplexes , 1970 .
[30] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[31] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .