The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach

We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane, a generalization of Voronoi diagrams based on the maximum distance of a point from a polygon, and show that it is equivalent to the Voronoi diagram of S under the Hausdorff distance function. We investigate the structural and combinatorial properties of the Hausdorff Voronoi diagram and give a divide and conquer algorithm for the construction of this diagram that improves upon previous results. As a byproduct we introduce the Hausdorff hull, a structure that relates to the Hausdorff Voronoi diagram in the same way as a convex hull relates to the ordinary Voronoi diagram. The Hausdorff Voronoi diagram finds direct application in the problem of computing the critical area of a VLSI Layout, a measure reflecting the sensitivity of a VLSI design to random manufacturing defects, described in a companion paper.13

[1]  Wojciech Maly,et al.  Extraction of critical areas for opens in large VLSI circuits , 1996, Proceedings. 1996 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[2]  D. T. Lee,et al.  Critical area computation via Voronoi diagrams , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Leonidas J. Guibas,et al.  The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..

[4]  Jorge Urrutia,et al.  A combinatorial property of convex sets , 1997, Discret. Comput. Geom..

[5]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[6]  D. M. H. Walker,et al.  VLASIC: A Catastrophic Fault Yield Simulator for Integrated Circuits , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Wojciech Maly,et al.  Computer-aided design for VLSI circuit manufacturability , 1990, Proc. IEEE.

[8]  Evanthia Papadopoulou Critical area computation for missing material defects in VLSI circuits , 2000, ISPD '00.

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Evanthia Papadopoulou,et al.  The Hausdorff Voronoi Diagram of Point Clusters in the Plane , 2003, Algorithmica.

[11]  Rolf Klein,et al.  The Farthest Color Voronoi Diagram and Related Problems , 2001 .

[12]  Shuo-Yan Chou,et al.  Parting directions for mould and die design , 1993, Comput. Aided Des..

[13]  Israel A. Wagner,et al.  An interactive VLSI CAD tool for yield estimation , 1995 .

[14]  Lutz Kettner,et al.  Using generic programming for designing a data structure for polyhedral surfaces , 1999, Comput. Geom..

[15]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[16]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[17]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.

[18]  Wojciech Maly,et al.  A DRC-based algorithm for extraction of critical areas for opens in large VLSI circuits , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..