Latent factor models: a tool for dimension reduction in joint species distribution models

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Latent factor models: a tool for dimension reduction in joint species distribution models Daria Bystrova, Giovanni Poggiato, Julyan Arbel, Wilfried Thuiller

[1]  J. Arbel,et al.  On the interpretations of joint modelling in community ecology , 2022 .

[2]  J. Arbel,et al.  Clustering Species With Residual Covariance Matrix in Joint Species Distribution Models , 2021, Frontiers in Ecology and Evolution.

[3]  Nerea Abrego,et al.  Joint Species Distribution Modelling: With Applications in R , 2020 .

[4]  P. Choler,et al.  Climate, soil resources and microbial activity shape the distributions of mountain plants based on their functional traits , 2020, Ecography.

[5]  Florian Hartig,et al.  A new joint species distribution model for faster and more accurate inference of species associations from big community data , 2020, Methods in Ecology and Evolution.

[6]  Jari Oksanen,et al.  Joint species distribution modelling with the r‐package Hmsc , 2020, Methods in ecology and evolution.

[7]  Michael A. McCarthy,et al.  A comparison of joint species distribution models for presence–absence data , 2018, Methods in Ecology and Evolution.

[8]  Damaris Zurell,et al.  Outstanding Challenges in the Transferability of Ecological Models. , 2018, Trends in ecology & evolution.

[9]  N. Zimmermann,et al.  Habitat Suitability and Distribution Models: With Applications in R , 2017 .

[10]  Anna Norberg,et al.  How to make more out of community data? A conceptual framework and its implementation as models and software. , 2017, Ecology letters.

[11]  James S. Clark,et al.  Generalized joint attribute modeling for biodiversity analysis: median-zero, multivariate, multifarious data , 2017 .

[12]  Jakub Stoklosa,et al.  Model-based thinking for community ecology , 2014, Plant Ecology.

[13]  Jane Elith,et al.  What do we gain from simplicity versus complexity in species distribution models , 2014 .

[14]  Kai Zhu,et al.  More than the sum of the parts: forest climate response from joint species distribution models. , 2014, Ecological applications : a publication of the Ecological Society of America.

[15]  Laura J. Pollock,et al.  Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM) , 2014 .

[16]  J. Calabrese,et al.  Stacking species distribution models and adjusting bias by linking them to macroecological models , 2014 .

[17]  Wilfried Thuiller,et al.  A road map for integrating eco-evolutionary processes into biodiversity models. , 2013, Ecology letters.

[18]  P. Taberlet,et al.  Environmental DNA , 2012, Molecular ecology.

[19]  Antoine Guisan,et al.  SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages , 2011 .

[20]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .

[21]  D. Dunson,et al.  Sparse Bayesian infinite factor models. , 2011, Biometrika.

[22]  Otso Ovaskainen,et al.  Making more out of sparse data: hierarchical modeling of species communities. , 2011, Ecology.

[23]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[24]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[25]  Jorge Soberón Grinnellian and Eltonian niches and geographic distributions of species. , 2007, Ecology letters.

[26]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[27]  James S. Clark,et al.  Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications , 2006 .

[28]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[29]  A. Peterson,et al.  INTERPRETATION OF MODELS OF FUNDAMENTAL ECOLOGICAL NICHES AND SPECIES' DISTRIBUTIONAL AREAS , 2005 .

[30]  C. Lortie,et al.  Rethinking plant community theory , 2004 .

[31]  Aaron M. Ellison,et al.  Bayesian inference in ecology , 2004 .

[32]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[33]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[34]  H. Pulliam On the relationship between niche and distribution , 2000 .

[35]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[36]  L. L. Cavalli-Sforza,et al.  Population Studies: Animal Ecology and Demography. , 1959 .