Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the CO2/N2 separation performance

[1]  G. Spazzafumo storage of hydrogen , 2020, Catalysis from A to Z.

[2]  Ali K. Sekizkardes,et al.  Incorporation of benzimidazole linked polymers into Matrimid to yield mixed matrix membranes with enhanced CO2/N2 selectivity , 2018 .

[3]  F. Kapteijn,et al.  Mixed-Matrix Membranes containing an Azine-Linked Covalent Organic Framework: Influence of the polymeric matrix on Post-Combustion CO 2 -capture , 2018 .

[4]  G. Zhu,et al.  Microporous Organic Materials for Membrane‐Based Gas Separation , 2018, Advanced materials.

[5]  W. Jin,et al.  Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO2 Removal. , 2017, ACS applied materials & interfaces.

[6]  J. Gascón,et al.  Mixed‐Matrix‐Membranen , 2017 .

[7]  A. Jess,et al.  BILP-19—An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake , 2017, Molecules.

[8]  Hong‐Cai Zhou,et al.  Porous Organic Polymers for Post‐Combustion Carbon Capture , 2017, Advanced materials.

[9]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[10]  Zhongyi Jiang,et al.  Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation , 2017 .

[11]  F. Kapteijn,et al.  Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2 /CH4 Separation. , 2016, Chemistry.

[12]  F. Kapteijn,et al.  Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test , 2016 .

[13]  Ali K. Sekizkardes,et al.  Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. , 2016, Chemical communications.

[14]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[15]  M. W. Anjum,et al.  Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. , 2015, ACS applied materials & interfaces.

[16]  Ali K. Sekizkardes,et al.  An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. , 2015, Chemical communications.

[17]  Heping Ma,et al.  Self-supported fibrous porous aromatic membranes for efficient CO2/N2 separations. , 2015, ACS applied materials & interfaces.

[18]  Ali K. Sekizkardes,et al.  Effect of acid-catalyzed formation rates of benzimidazole-linked polymers on porosity and selective CO2 capture from gas mixtures. , 2015, Environmental science & technology.

[19]  M. Omidkhah,et al.  Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix , 2015 .

[20]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[21]  Patricia Gorgojo,et al.  Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes , 2014 .

[22]  Zafer Kahveci,et al.  Application of pyrene-derived benzimidazole-linked polymers to CO2 separation under pressure and vacuum swing adsorption settings , 2014 .

[23]  Pei Li,et al.  High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation , 2014 .

[24]  Jinhee Park,et al.  Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and low cost , 2014 .

[25]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[26]  Heping Ma,et al.  Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures , 2014 .

[27]  C. Janiak,et al.  Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation , 2013 .

[28]  S. Kaliaguine,et al.  Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation , 2013 .

[29]  A. Nagai,et al.  Conjugated microporous polymers: design, synthesis and application. , 2013, Chemical Society reviews.

[30]  Zhonghua Zhu,et al.  Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation , 2013 .

[31]  W. Goedel,et al.  Bicontinuous zeolite polymer composite membranes prepared via float casting. , 2013, Journal of the American Chemical Society.

[32]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[33]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[34]  Tao Li,et al.  Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers , 2013 .

[35]  W. Wang,et al.  Covalent organic frameworks. , 2012, Chemical Society reviews.

[36]  Hani M. El‐Kaderi,et al.  Synthesis and Characterization of Porous Benzimidazole-Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake , 2012 .

[37]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[38]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[39]  I. Vankelecom,et al.  SPEEK/Matrimid blend membranes for CO 2 separation , 2011 .

[40]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[41]  Andrew I. Cooper,et al.  Chemical tuning of CO2 sorption in robust nanoporous organic polymers , 2011 .

[42]  Hani M. El‐Kaderi,et al.  Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO2 Capture and H2 Storage , 2011 .

[43]  S. Nguyen,et al.  Imine-Linked Microporous Polymer Organic Frameworks , 2010 .

[44]  Jae Eun Lee,et al.  Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement , 2010 .

[45]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[46]  S. Chirachanchai,et al.  Investigation of the role of benzimidazole-based model compounds on thermal stability and anhydrous proton conductivity of sulfonated poly(ether ether ketone) , 2009 .

[47]  L. Robeson,et al.  The upper bound revisited , 2008 .

[48]  Sangil Kim,et al.  Fabrication and characterization of polyimide–zeolite L mixed matrix membranes for gas separations , 2006 .

[49]  J. Moulijn,et al.  Structured Catalysts and Reactors , 2005 .

[50]  Ineke G.M. Punt,et al.  Suppression of gas separation membrane plasticization by homogeneous polymer blending , 2001 .

[51]  F. Kapteijn,et al.  One-component permeation maximum: Diagnostic tool for silicalite-1 membranes? , 2000 .

[52]  F. Kapteijn,et al.  Methodological and operational aspects of permeation measurements on silicalite-1 membranes , 1998 .

[53]  Jean M. J. Fréchet,et al.  Kinetic Control of Pore Formation in Macroporous Polymers. Formation of "Molded" Porous Materials with High Flow Characteristics for Separations or Catalysis , 1995 .