A New APSK-Based M-Ary Differential Chaos Shift Keying Modulation System

In this letter, a new amplitude phase shift keying (APSK) based <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-ary differential chaos shift keying (A-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK) system is proposed. The theoretical symbol error rate (SER) and bit error rate (BER) expressions of A-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK system for two constellations are derived and verified for both AWGN and multipath Rayleigh fading channels. Numerical results reveal that A-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK system provides near or better BER with much lower peak-to-average power ratio (PAPR) as compared to quadrature amplitude modulation (QAM) based <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK (Q-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK) system. Furthermore, A-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK system shows better robustness against channel estimation error than Q-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK system. At last, with APSK constellation rotation, the BER of A-<inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math></inline-formula>-DCSK system is enhanced with a slightly increased PAPR.

[1]  Hua Wang,et al.  Adaptive hierarchical coding and modulation scheme over satellite channels , 2019, IET Commun..

[2]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[3]  Shilian Wang,et al.  $M$-DCSK-Based Chaotic Communications in MIMO Multipath Channels With No Channel State Information , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Deqing Wang,et al.  An $M$ -Ary Orthogonal Multilevel Differential Chaos Shift Keying System With Code Index Modulation , 2019, IEEE Transactions on Communications.

[5]  Shlomo Shamai,et al.  The capacity of average and peak-power-limited quadrature Gaussian channels , 1995, IEEE Trans. Inf. Theory.

[6]  Yi Fang,et al.  Design of an Adaptive Multiresolution $M$ -Ary DCSK System , 2017, IEEE Communications Letters.

[7]  Research of MAPSK modulation based on the nonlinear satellite channel , 2010, 2010 3rd IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT).

[8]  Zbigniew Galias,et al.  Quadrature chaos-shift keying: theory and performance analysis , 2001 .

[9]  G. Kolumban,et al.  Differential chaos shift keying : A robust coding for chaotic communication , 1996 .

[10]  Guanrong Chen,et al.  Design and Performance Analysis of a New Multiresolution $M$-Ary Differential Chaos Shift Keying Communication System , 2015, IEEE Transactions on Wireless Communications.

[11]  Hendrik C. Ferreira,et al.  Closed-Form SER Expression for APSK Based on the Kite Structure , 2017, IEEE Communications Letters.

[12]  C. Thomas,et al.  Digital Amplitude-Phase Keying with M-Ary Alphabets , 1974, IEEE Trans. Commun..

[13]  Lin Wang,et al.  A Square-Constellation-Based $M$ -Ary DCSK Communication System , 2016, IEEE Access.