Data visualization and data mining of continuous numerical and discrete nominal‐valued microarray databases for bioinformatics

Purpose – To present research in the area of the applications of modern heuristics and data mining techniques in knowledge discovery.Design/methodology/approach – Applications of data mining for neural networks using NeuralWare Predict® software, genetic algorithms using Biodiscovery GeneSight® (2005) software, and regression and discriminant analysis using SPSS® were selected for bioscience data sets of continuous numerical‐valued Abalone fish data and discrete nominal‐valued mushroom data.Findings – This paper illustrates the useful information that can be obtained using data mining for evolutionary algorithms specifically as those for neural networks, genetic algorithms, regression analysis, and discriminant analysis.Research limitations/implications – The use of NeuralWare Predict® was a very effective method of implementing training rules for neural networks to identify the important attributes of numerical and nominal valued data.Practical implications – The software and algorithms discussed in the ...

[1]  Jesús S. Aguilar-Ruiz,et al.  Knowledge-based fast evaluation for evolutionary learning , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  Angelica Lindlöf,et al.  Simulations of simple artificial genetic networks reveal features in the use of Relevance Networks , 2005, Silico Biol..

[3]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[4]  Nikolaos G. Bourbakis,et al.  Preface in Bioinformatics , 2005, Int. J. Artif. Intell. Tools.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Gerrit K. Janssens,et al.  Data mining with genetic algorithms on binary trees , 2003, Eur. J. Oper. Res..

[7]  Pierre Baldi,et al.  DNA Microarrays and Gene Expression - From Experiments to Data Analysis and Modeling , 2002 .

[8]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[9]  J. Giardina,et al.  Comparison of different microarray data analysis programs and description of a database for microarray data management. , 2004, DNA and cell biology.

[10]  D. Edwards,et al.  Statistical Analysis of Gene Expression Microarray Data , 2003 .

[11]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[12]  Ernst Wit,et al.  Statistics for Microarrays : Design, Analysis and Inference , 2004 .

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[14]  A. Butte,et al.  Microarrays for an Integrative Genomics , 2002 .

[15]  Peter Winker,et al.  Applications of optimization heuristics to estimation and modelling problems , 2004, Comput. Stat. Data Anal..

[16]  Gautam B. Singh Statistical Modeling of DNA Sequences and Patterns , 2003 .

[17]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[18]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[19]  C. Hoppe Bioinformatics: Computers or clinicians for complex disease risk assessment? , 2005, European Journal of Human Genetics.

[20]  B. Agard,et al.  Data-mining-based methodology for the design of product families , 2004 .

[21]  Igor Jurisica,et al.  Data mining for case-based reasoning in high-dimensional biological domains , 2005, IEEE Transactions on Knowledge and Data Engineering.

[22]  Bhabesh Nath,et al.  Multi-objective rule mining using genetic algorithms , 2004, Inf. Sci..

[23]  Stephen A. Krawetz,et al.  Introduction to Bioinformatics , 2003, Humana Press.

[24]  Ulrich Berger,et al.  Term rewriting for normalization by evaluation , 2003, Inf. Comput..

[25]  Jean-Michel Claverie,et al.  Bioinformatics For Dummies , 2003 .

[26]  Ran Wolff,et al.  Hierarchical decision tree induction in distributed genomic databases , 2005, IEEE Transactions on Knowledge and Data Engineering.

[27]  Yen-Jen Oyang,et al.  Analysis and summarization of correlations in data cubes and its application in microarray data analysis , 2005, Intell. Data Anal..

[28]  Earl Cox,et al.  Fuzzy Modeling And Genetic Algorithms For Data Mining And Exploration , 2005 .

[29]  R. Singer,et al.  The Audubon Society field guide to North American mushrooms , 1981 .

[30]  Ben Coppin,et al.  Artificial Intelligence Illuminated , 2004 .

[31]  Steven Guan,et al.  An incremental approach to genetic-algorithms-based classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[32]  Mark A. van de Wiel,et al.  Microarray Data Analysis: From Hypotheses to Conclusions Using Gene Expression Data , 2004, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[33]  Sorin Drăghici,et al.  Data Analysis Tools for DNA Microarrays , 2003 .

[34]  Renpu Li,et al.  Mining classification rules using rough sets and neural networks , 2004, Eur. J. Oper. Res..

[35]  Jae Won Lee,et al.  An extensive comparison of recent classification tools applied to microarray data , 2004, Comput. Stat. Data Anal..

[36]  Geoffrey J. McLachlan,et al.  Analyzing Microarray Gene Expression Data , 2004 .

[37]  Dhammika Amaratunga,et al.  Exploration and Analysis of DNA Microarray and Protein Array Data , 2003, Wiley series in probability and statistics.

[38]  George Karypis,et al.  Gene Classification Using Expression Profiles: A Feasibility Study , 2005, Int. J. Artif. Intell. Tools.

[39]  Jonathan Pevsner,et al.  Bioinformatics and functional genomics , 2003 .

[40]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .