Super‐simple resolvable balanced incomplete block designs with block size 4 and index 2
暂无分享,去创建一个
[1] Christopher A. Rodger,et al. Linear spaces with many small lines , 1994, Discret. Math..
[2] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[3] Ruizhong Wei,et al. Super-simple (ν, 5, 5) Designs , 2006, Des. Codes Cryptogr..
[4] Hao Shen,et al. Resolvable Maximum Packings with Quadruples , 2005, Des. Codes Cryptogr..
[5] Douglas R. Stinson,et al. Frames with Block Size Four , 1992, Canadian Journal of Mathematics.
[6] Gennian Ge,et al. Asymptotic results on the existence of 4‐RGDDs and uniform 5‐GDDs , 2005 .
[7] Gennian Ge,et al. Some New uniform frames with block size four and index one or three , 2004 .
[8] Chen Kejun. On the existence of super-simple (v,4,4)-BIBDs , 1996 .
[9] Donald L. Kreher,et al. Super-simple (v, 5, 2)-designs , 2004, Discret. Appl. Math..
[10] Andries E. Brouwer. Mutually orthogonal latin squares , 1978 .
[11] Gennian Ge,et al. Super‐simple resolvable balanced incomplete block designs with block size 4 and index 3 , 2004 .
[12] Zhenfu Cao,et al. Super-simple balanced incomplete block designs with block size 4 and index 6 , 2005 .
[13] Vladimir S. Lebedev,et al. On optimal superimposed codes , 2004 .
[14] R. Julian R. Abel,et al. Super-simple Steiner pentagon systems , 2008, Discret. Appl. Math..
[15] Frank E. Bennett,et al. Holey Steiner pentagon systems , 1999 .
[16] Ronald C. Mullin,et al. On the existence of frames , 1981, Discret. Math..
[17] R. Julian R. Abel,et al. Super‐simple holey Steiner pentagon systems and related designs , 2008 .
[18] Christopher A. Rodger,et al. Existence of certain skew room frames with application to weakly 3-chromatic linear spaces , 1994 .
[19] K. Heinrich,et al. Super-simple designs with v⩽32 , 2001 .
[20] Iliya Bluskov,et al. New upper bounds on the minimum size of covering designs , 1998 .
[21] Peter Adams,et al. On the existence of super-simple designs with block size 4 , 1995 .