Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage[W][OA]

Transcriptomes of iron-limited versus -deficient Chlamydomonas reinhardtii cells under photoheterotrophic versus photoautotrophic conditions are described. Increased transcript abundance was positively correlated with protein abundance, except for iron-containing proteins where negative correlation was found. Some responses, including upregulation of MDAR1 and CGLD27/At5g67370, are conserved in land plants. We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.

[1]  Yajun Li,et al.  ANovel Negative Fe-Deficiency-Responsive Element and a TGGCA-Type-Like FeRE Control the Expression of FTR 1 in Chlamydomonas reinhardtii , 2014 .

[2]  Crysten E. Blaby-Haas,et al.  The ins and outs of algal metal transport. , 2012, Biochimica et biophysica acta.

[3]  Scott I. Hsieh,et al.  Fe Sparing and Fe Recycling Contribute to Increased Superoxide Dismutase Capacity in Iron-Starved Chlamydomonas reinhardtii[W] , 2012, Plant Cell.

[4]  M. Pellegrini,et al.  Transcriptome-Wide Changes in Chlamydomonas reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO2-Concentrating Mechanism Regulator CIA5/CCM1[W][OA] , 2012, Plant Cell.

[5]  P. Fromme,et al.  Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas reinhardtii , 2012, PloS one.

[6]  Jürgen E W Polle,et al.  Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. , 2012, Plant science : an international journal of experimental plant biology.

[7]  M. Pellegrini,et al.  Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase* , 2012, The Journal of Biological Chemistry.

[8]  M. Pellegrini,et al.  Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis[C][W] , 2012, Plant Cell.

[9]  R. Stein,et al.  Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots , 2011, Journal of experimental botany.

[10]  W. Fang Transcriptome-Wide Changes in Chlamydomonas reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO 2 -Concentrating Mechanism , 2012 .

[11]  J. Helmann,et al.  Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. , 2012, Advances in microbial physiology.

[12]  K. Bidle,et al.  Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. , 2012, Environmental microbiology.

[13]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[14]  A. Grossman,et al.  The GreenCut2 Resource, a Phylogenomically Derived Inventory of Proteins Specific to the Plant Lineage* , 2011, The Journal of Biological Chemistry.

[15]  M. Spalding,et al.  Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture , 2011, Photosynthesis Research.

[16]  Kengo Kinoshita,et al.  ATTED-II Updates: Condition-Specific Gene Coexpression to Extend Coexpression Analyses and Applications to a Broad Range of Flowering Plants , 2011, Plant & cell physiology.

[17]  C. Foyer,et al.  Ascorbate and Glutathione: The Heart of the Redox Hub1 , 2011, Plant Physiology.

[18]  Christina Backes,et al.  Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana , 2011, BMC Plant Biology.

[19]  N. Tuteja,et al.  Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. , 2010, Plant physiology and biochemistry : PPB.

[20]  Wolfgang Busch,et al.  The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis Roots[W][OA] , 2010, Plant Cell.

[21]  K. Niyogi,et al.  Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis , 2010, Photosynthesis Research.

[22]  B. Paw,et al.  Iron and Porphyrin Trafficking in Heme Biogenesis* , 2010, The Journal of Biological Chemistry.

[23]  D. Kosman Redox Cycling in Iron Uptake, Efflux, and Trafficking* , 2010, The Journal of Biological Chemistry.

[24]  C. Schwarz,et al.  Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe-S clusters and interact with stromal HSP70B. , 2010, The Biochemical journal.

[25]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[26]  W. Schmidt,et al.  Transcriptional Profiling of the Arabidopsis Iron Deficiency Response Reveals Conserved Transition Metal Homeostasis Networks1[C][W] , 2010, Plant Physiology.

[27]  Yiannis Kourmpetis,et al.  Bayesian Markov Random Field Analysis for Protein Function Prediction Based on Network Data , 2010, PloS one.

[28]  Yajun Li,et al.  A Novel Negative Fe-Deficiency-Responsive Element and a TGGCA-Type-Like FeRE Control the Expression of FTR1 in Chlamydomonas reinhardtii , 2010, Journal of biomedicine & biotechnology.

[29]  T. Kuroiwa,et al.  Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. , 2009, The Plant journal : for cell and molecular biology.

[30]  David N. Powers,et al.  Control of Iron Homeostasis by an Iron-Regulated Ubiquitin Ligase , 2009, Science.

[31]  N. Grishin,et al.  An E3 Ligase Possessing an Iron-Responsive Hemerythrin Domain Is a Regulator of Iron Homeostasis , 2009, Science.

[32]  N. Grotz,et al.  The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis[W][OA] , 2009, The Plant Cell Online.

[33]  Mary Lou Guerinot,et al.  Iron uptake and transport in plants: the good, the bad, and the ionome. , 2009, Chemical reviews.

[34]  W. Schmidt,et al.  Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. , 2009, The New phytologist.

[35]  A. Lloyd,et al.  Multiple Antibiotic Resistance in Arabidopsis Is Conferred by Mutations in a Chloroplast-Localized Transport Protein[C][W][OA] , 2009, Plant Physiology.

[36]  Xiaodong Deng,et al.  An Fe deficiency responsive element with a core sequence of TGGCA regulates the expression of FEA1 in Chlamydomonas reinharditii. , 2009, Journal of biochemistry.

[37]  J. Whelan,et al.  Physiological and Transcriptome Analysis of Iron and Phosphorus Interaction in Rice Seedlings1[C][W] , 2009, Plant Physiology.

[38]  S. Merchant,et al.  Pattern of Expression and Substrate Specificity of Chloroplast Ferredoxins from Chlamydomonas reinhardtii* , 2009, The Journal of Biological Chemistry.

[39]  W. Martin,et al.  A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. , 2009, Molecular biology and evolution.

[40]  M. Guerinot,et al.  Homing in on iron homeostasis in plants. , 2009, Trends in plant science.

[41]  Dan Golick,et al.  Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures , 2009, Proteomics.

[42]  M. Gorenstein,et al.  The detection, correlation, and comparison of peptide precursor and product ions from data independent LC‐MS with data dependant LC‐MS/MS , 2009, Proteomics.

[43]  H. Fukuzawa,et al.  Carbon‐concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses , 2009, Journal of basic microbiology.

[44]  M. Hayashi,et al.  SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis[W] , 2009, The Plant Cell Online.

[45]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[46]  J. Cullen Interactive comment on "Satellite-detected fluorescence reveals global physiology of ocean phytoplankton" by M. J. Behrenfeld et al. , 2009 .

[47]  M. Hippler,et al.  Proteomics of metal mediated protein dynamics in plants - iron and cadmium in the focus. , 2009, Frontiers in bioscience.

[48]  Wolfgang Schmidt,et al.  Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses , 2009, BMC Genomics.

[49]  A. Mckie The role of Dcytb in iron metabolism: an update. , 2008, Biochemical Society transactions.

[50]  Bryan A. Franz,et al.  Satellite-detected fluorescence reveals global physiology of ocean phytoplankton , 2008 .

[51]  Zhenhai Han,et al.  An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition. , 2008, Journal of integrative plant biology.

[52]  M. Guerinot,et al.  Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions , 2008, Proceedings of the National Academy of Sciences.

[53]  A. Fernie,et al.  Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation , 2008, Proceedings of the National Academy of Sciences.

[54]  A. Busch,et al.  Ferritin is required for rapid remodeling of the photosynthetic apparatus and minimizes photo-oxidative stress in response to iron availability in Chlamydomonas reinhardtii. , 2008, The Plant journal : for cell and molecular biology.

[55]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[56]  R. Lill,et al.  Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. , 2008, Annual review of biochemistry.

[57]  Xiu-Jie Wang,et al.  Proteomic response to iron deficiency in tomato root , 2008, Proteomics.

[58]  Daniel L. Mace,et al.  Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress , 2008, Science.

[59]  S. Merchant,et al.  FER1 and FER2 Encoding Two Ferritin Complexes in Chlamydomonas reinhardtii Chloroplasts Are Regulated by Iron , 2008, Genetics.

[60]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[61]  J. Li,et al.  FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis , 2008, Cell Research.

[62]  Scott I. Hsieh,et al.  A Ferroxidase Encoded by FOX1 Contributes to Iron Assimilation under Conditions of Poor Iron Nutrition in Chlamydomonas , 2008, Eukaryotic Cell.

[63]  Jerry Kaplan,et al.  Regulation of iron acquisition and storage: consequences for iron-linked disorders , 2008, Nature Reviews Molecular Cell Biology.

[64]  E. McLean,et al.  Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia. , 2008 .

[65]  C. Philpott,et al.  Response to Iron Deprivation in Saccharomyces cerevisiae , 2007, Eukaryotic Cell.

[66]  A. Busch,et al.  Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii , 2007, Proteomics.

[67]  Xiaodong Deng,et al.  A novel Fe deficiency-responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. , 2007, Plant & cell physiology.

[68]  Xiaodong Deng,et al.  Two Iron-Responsive Promoter Elements Control Expression of FOX1 in Chlamydomonas reinhardtii , 2007, Eukaryotic Cell.

[69]  D. Kosman,et al.  The Metalloreductase Fre6p in Fe-Efflux from the Yeast Vacuole* , 2007, Journal of Biological Chemistry.

[70]  R. A. Sperotto,et al.  Increased senescence-associated gene expression and lipid peroxidation induced by iron deficiency in rice roots , 2007, Plant Cell Reports.

[71]  S. Merchant,et al.  FEA1, FEA2, and FRE1, Encoding Two Homologous Secreted Proteins and a Candidate Ferrireductase, Are Expressed Coordinately with FOX1 and FTR1 in Iron-Deficient Chlamydomonas reinhardtii , 2007, Eukaryotic Cell.

[72]  C. Brenner,et al.  Arabidopsis VTC2 Encodes a GDP-l-Galactose Phosphorylase, the Last Unknown Enzyme in the Smirnoff-Wheeler Pathway to Ascorbic Acid in Plants*♦ , 2007, Journal of Biological Chemistry.

[73]  M. Guerinot,et al.  FIT, the FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR in Arabidopsis. , 2007, Plant physiology and biochemistry : PPB.

[74]  Kengo Kinoshita,et al.  ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis , 2006, Nucleic Acids Res..

[75]  M. Cellier,et al.  Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. , 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[76]  M. Hippler,et al.  Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii , 2006, Proteomics.

[77]  H. Asard,et al.  An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes. , 2006, Biochimica et biophysica acta.

[78]  B. Bartel,et al.  An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate Responsiveness , 2006, Genetics.

[79]  Jerry Kaplan,et al.  Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1 , 2006, Science.

[80]  S. Merchant,et al.  Manganese Deficiency in Chlamydomonas Results in Loss of Photosystem II and MnSOD Function, Sensitivity to Peroxides, and Secondary Phosphorus and Iron Deficiency1[W][OA] , 2006, Plant Physiology.

[81]  S. Clemens Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. , 2006, Biochimie.

[82]  Christoph Griesbeck,et al.  Chlamydomonas reinhardtii , 2006, Molecular biotechnology.

[83]  H. Ling,et al.  Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana , 2006, Cell Research.

[84]  N. von Wirén,et al.  AtIREG2 Encodes a Tonoplast Transport Protein Involved in Iron-dependent Nickel Detoxification in Arabidopsis thaliana Roots* , 2006, Journal of Biological Chemistry.

[85]  H. Asard,et al.  Three mammalian cytochromes b561 are ascorbate‐dependent ferrireductases , 2006, The FEBS journal.

[86]  S. Mori,et al.  Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. , 2006, Journal of experimental botany.

[87]  S. Merchant,et al.  Between a rock and a hard place: trace element nutrition in Chlamydomonas. , 2006, Biochimica et biophysica acta.

[88]  C. Philpott Iron uptake in fungi: a system for every source. , 2006, Biochimica et biophysica acta.

[89]  N. Nelson,et al.  The NRAMP family of metal-ion transporters. , 2006, Biochimica et biophysica acta.

[90]  M. Gorenstein,et al.  Simultaneous Qualitative and Quantitative Analysis of theEscherichia coli Proteome , 2006, Molecular & Cellular Proteomics.

[91]  S. Haebel,et al.  Proteomic Studies under Iron Stress: Iron Deficiency-Induced Regulation of Protein Synthesis in the Green Alga Chlamydomonas reinhardtii , 2006 .

[92]  R. Birkenbihl,et al.  A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. Thomine,et al.  Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron , 2005, The EMBO journal.

[94]  H. Ling,et al.  AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants , 2005, Cell Research.

[95]  E. Stauber,et al.  N-terminal Processing of Lhca3 Is a Key Step in Remodeling of the Photosystem I-Light-harvesting Complex Under Iron Deficiency in Chlamydomonas reinhardtii* , 2005, Journal of Biological Chemistry.

[96]  A. Grossman,et al.  Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii1[w] , 2005, Plant Physiology.

[97]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[98]  M. Gorenstein,et al.  Quantitative proteomic analysis by accurate mass retention time pairs. , 2005, Analytical chemistry.

[99]  P. Bauer,et al.  Iron-Mediated Control of the Basic Helix-Loop-Helix Protein FER, a Regulator of Iron Uptake in Tomato1 , 2005, Plant Physiology.

[100]  D. Baurain,et al.  Update on Chlamydomonas Oxidative Phosphorylation Proteome The Mitochondrial Oxidative Phosphorylation Proteome of Chlamydomonas reinhardtii Deduced from the Genome Sequencing Project 1 , 2005 .

[101]  M. Guerinot,et al.  The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response , 2004, The Plant Cell Online.

[102]  Bernd Weisshaar,et al.  FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana , 2004, FEBS letters.

[103]  Ulrich Pohl,et al.  Reactive Oxygen Species: Players in the Platelet Game , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[104]  J. V. Van Beeumen,et al.  Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. , 2004, Biochimica et biophysica acta.

[105]  Elizabeth C. Theil Iron, ferritin, and nutrition. , 2004, Annual review of nutrition.

[106]  J. Schloss A Chlamydomonas gene encodes a G protein β subunit-like polypeptide , 1990, Molecular and General Genetics MGG.

[107]  E. Obayashi,et al.  Properties of two distinct heme centers of cytochrome b561 from bovine chromaffin vesicles studied by EPR, resonance Raman, and ascorbate reduction assay. , 2004, Journal of biochemistry.

[108]  C. Ponting,et al.  Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. , 2003, Biochimica et biophysica acta.

[109]  S. Thomine,et al.  AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. , 2003, The Plant journal : for cell and molecular biology.

[110]  J. Abadía,et al.  Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots , 2003, Protoplasma.

[111]  D. Eide,et al.  Induction of the ZRC1 Metal Tolerance Gene in Zinc-limited Yeast Confers Resistance to Zinc Shock* , 2003, The Journal of Biological Chemistry.

[112]  R. Hell,et al.  Iron uptake, trafficking and homeostasis in plants , 2003, Planta.

[113]  S. Merchant,et al.  Adaptation to Fe‐deficiency requires remodeling of the photosynthetic apparatus , 2002, The EMBO journal.

[114]  M. Ganal,et al.  The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[115]  S. Merchant,et al.  Copper-Dependent Iron Assimilation Pathway in the Model Photosynthetic Eukaryote Chlamydomonas reinhardtii , 2002, Eukaryotic Cell.

[116]  D. Staiger Chemical strategies for iron acquisition in plants. , 2002, Angewandte Chemie.

[117]  M. Guerinot,et al.  Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001263. , 2002, The Plant Cell Online.

[118]  J. Gitlin,et al.  Ceruloplasmin metabolism and function. , 2002, Annual review of nutrition.

[119]  Govindjee,et al.  The Polyphosphate Bodies of Chlamydomonas reinhardtii Possess a Proton-pumping Pyrophosphatase and Are Similar to Acidocalcisomes* , 2001, The Journal of Biological Chemistry.

[120]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[121]  V. Rubio,et al.  A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. , 2001, Genes & development.

[122]  Jerry Kaplan,et al.  CCC1 Is a Transporter That Mediates Vacuolar Iron Storage in Yeast* , 2001, The Journal of Biological Chemistry.

[123]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[124]  R J Simpson,et al.  An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron , 2001, Science.

[125]  N. Andrews,et al.  Iron homeostasis: insights from genetics and animal models , 2000, Nature Reviews Genetics.

[126]  M. Portnoy,et al.  Saccharomyces cerevisiae Expresses Three Functionally Distinct Homologues of the Nramp Family of Metal Transporters , 2000, Molecular and Cellular Biology.

[127]  P. Trost,et al.  Purification of cytochrome b-561 from bean hypocotyls plasma membrane. Evidence for the presence of two heme centers. , 2000, Biochimica et biophysica acta.

[128]  N. Crawford,et al.  Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  A. Grossman,et al.  Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[130]  J. Briat,et al.  Regulation of plant ferritin synthesis: how and why , 1999, Cellular and Molecular Life Sciences CMLS.

[131]  Susan E. Douglas,et al.  The Plastid Genome of the Cryptophyte Alga, Guillardia theta: Complete Sequence and Conserved Synteny Groups Confirm Its Common Ancestry with Red Algae , 1999, Journal of Molecular Evolution.

[132]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[133]  S. Merchant,et al.  Copper-responsive gene expression during adaptation to copper deficiency. , 1998, Methods in enzymology.

[134]  N. Andrews,et al.  Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene , 1997, Nature genetics.

[135]  J. Briat,et al.  Iron transport and storage in plants , 1997 .

[136]  R. Crystal Managed care for viruses , 1997, Nature Medicine.

[137]  W. Stremmel,et al.  Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. , 1995, The Biochemical journal.

[138]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[139]  P. Hayes,et al.  Nucleotide Sequence of a cDNA Encoding a Heat-Shock Protein (HSP70) from Barley (Hordeum vulgare L.) , 1994, Plant physiology.

[140]  M. Guerinot,et al.  Iron: Nutritious, Noxious, and Not Readily Available , 1994, Plant physiology.

[141]  D. Davies,et al.  The plastid genome. , 1993 .

[142]  K. Asada,et al.  Thylakoid-Bound Ascorbate Peroxidase in Spinach Chloroplasts and Photoreduction of Its Primary Oxidation Product Monodehydroascorbate Radicals in Thylakoids , 1992 .

[143]  G. Howe,et al.  Heavy Metal-Activated Synthesis of Peptides in Chlamydomonas reinhardtii. , 1992, Plant physiology.

[144]  F. Morel,et al.  Limitation of productivity by trace metals in the sea , 1991 .

[145]  P. Fleming,et al.  Cytochrome b561, ascorbic acid, and transmembrane electron transfer. , 1991, The American journal of clinical nutrition.

[146]  J. Schloss A Chlamydomonas gene encodes a G protein beta subunit-like polypeptide. , 1990, Molecular & general genetics : MGG.

[147]  D. Njus,et al.  Mechanism of Ascorbic Acid Regeneration Mediated by Cytochrome b561 a , 1987, Annals of the New York Academy of Sciences.

[148]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[149]  A. Castelfranco,et al.  Effects of Iron and Oxygen on Chlorophyll Biosynthesis : I. IN VIVO OBSERVATIONS ON IRON AND OXYGEN-DEFICIENT PLANTS. , 1982, Plant physiology.

[150]  L. Mets,et al.  Photosynthesis-deficient Mutants of Chlamydomonas reinhardii with Associated Light-sensitive Phenotypes. , 1981, Plant physiology.

[151]  F. Eve MICROCYTIC ANAEMIA , 1931 .