Integration and Approximation in High Dimensions – a Tutorial

Often they are high-dimensional expected values: Example: In 1995 Traub and Paskov computed values of ‘mortgage-backed obligations’. In the USA people buying a house borrow money from a bank. In return, the bank holds a ’mortgage’. US mortgages last for 30 years, and may be repaid at the end of any month, making 30 × 12 = 360 repayment possibilities. The monthly change in the interest rate is treated as a random variable, with some assumed (usually Gaussian) probability distribution. There are 360 random variables, so the computed quantity is a 360-dimensional expected value. (The success of that experiment, using “quasi-Monte Carlo methods”, generated much interest in quasi-Monte Methods.)

[1]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[2]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[3]  Henryk Wozniakowski,et al.  An intractability result for multiple integration , 1997, Math. Comput..

[4]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[5]  Frances Y. Kuo,et al.  Lifting the Curse of Dimensionality , 2005 .

[6]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[7]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[8]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[9]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..

[10]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[11]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[12]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[13]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[14]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[15]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[16]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[17]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.