Integration and Approximation in High Dimensions – a Tutorial
暂无分享,去创建一个
[1] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[2] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[3] Henryk Wozniakowski,et al. An intractability result for multiple integration , 1997, Math. Comput..
[4] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[5] Frances Y. Kuo,et al. Lifting the Curse of Dimensionality , 2005 .
[6] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[7] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[8] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[9] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[10] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[11] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[12] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[13] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[14] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[15] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[16] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[17] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.