Numerical methods for multiscale inverse problems

We consider the inverse problem of determining the highly oscillatory coefficient $a^\epsilon$ in partial differential equations of the form $-\nabla\cdot (a^\epsilon\nabla u^\epsilon)+bu^\epsilon = f$ from given measurements of the solutions. Here, $\epsilon$ indicates the smallest characteristic wavelength in the problem ($0 0$, and exploration seismology, $b < 0$.

[1]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[2]  Giovanni Alessandrini,et al.  EIT and the average conductivity , 2008 .

[3]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[4]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[5]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[6]  René-Édouard Plessix,et al.  The use of low frequencies in a full‐waveform inversion and impedance inversion land seismic case study , 2013 .

[7]  Andreas Fichtner,et al.  Multiscale full waveform inversion , 2013 .

[8]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[9]  Wim A. Mulder,et al.  Exploring some issues in acoustic full waveform inversion , 2008 .

[10]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[11]  William W. Symes,et al.  The seismic reflection inverse problem , 2009 .

[12]  Giovanni Alessandrini Open issues of stability for the inverse conductivity problem , 2007 .

[13]  Giovanni Alessandrini,et al.  Determining Conductivity with Special Anisotropy by Boundary Measurements , 2001, SIAM J. Math. Anal..

[14]  G. A. Pavliotis,et al.  Multiscale modelling and inverse problems , 2010, 1009.2943.

[15]  Jacob Fish,et al.  Micro-inertia effects in nonlinear heterogeneous media , 2012 .

[16]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[17]  Guillaume Bal,et al.  Multi-source quantitative PAT in diffusive regime , 2011 .

[18]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[19]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .

[20]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[21]  Ivo Babuška,et al.  Solution of Helmholtz problems by knowledge-based FEM , 1997 .