Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths
暂无分享,去创建一个
Irina N. Sokolik | Owen B. Toon | R. Bergstrom | I. Sokolik | O. Toon | Robert W. Bergstrom | O. B. Toon
[1] I. Sokolik,et al. Regional direct radiative forcing by the airborne mineral aerosols , 1997 .
[2] I. Sokolik,et al. Investigation of optical and radiative properties of atmospheric dust aerosols , 1993 .
[3] I. Fung,et al. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .
[4] J. Lelieveld,et al. Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .
[5] Eric P. Shettle,et al. A Wind Dependent Desert Aerosol Model: Radiative Properties , 1988 .
[6] Carl Sagan,et al. Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .
[7] E. M. Patterson,et al. Commonalities in measured size distributions for aerosols having a soil-derived component , 1977 .
[8] I. Sokolik,et al. Complex refractive index of atmospheric dust aerosols , 1993 .
[9] A. Lacis,et al. The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.
[10] G. d’Almeida,et al. On the variability of desert aerosol radiative characteristics , 1987 .
[11] Irina N. Sokolik,et al. Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.
[12] Gerard Brogniez,et al. Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part II: Broadband Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence , 1987 .
[13] Stanley G. Benjamin,et al. Radiative Heating Rates for Saharan Dust , 1980 .
[14] T. R. Steyer,et al. Infrared absorption by small amorphous quartz spheres. , 1974, Applied optics.
[15] E. Patterson. Optical properties of the crustal aerosol - Relation to chemical and physical characteristics , 1981 .
[16] F. Volz,et al. Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.
[17] Zev Levin,et al. Size distribution, chemical composition, and optical properties of urban and desert aerosols in Israel , 1979 .
[18] J. Pollack,et al. Derivation of midinfrared (5-25 μm) optical constants of some silicates and palagonite , 1991 .
[19] F. Volz,et al. Infrared refractive index of atmospheric aerosol substances. , 1972, Applied optics.
[20] A. Emslie,et al. Optical constants of monoclinic anisotropic crystals: gypsum. , 1983, Applied optics.
[21] K. Pye. Aeolian dust and dust deposits , 1987 .
[22] R. J. Bell,et al. Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared , 1993 .
[23] J. Prospero,et al. Saharan aerosols over the tropical North Atlantic — Mineralogy , 1980 .
[24] E. Mlawer,et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .
[25] Eric P. Shettle,et al. Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .
[26] The optical constants of atmospheric aerosol particles in the 7.5–12 μm spectral region , 1976 .
[27] J. Peterson,et al. Optical properties of quartz dust particles at infrared wavelengths , 1969 .
[28] S. Ackerman. Remote sensing aerosols using satellite infrared observations , 1997 .
[29] B. Marticorena,et al. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .
[30] F. Volz,et al. Infrared absorption by atmospheric aerosol substances , 1972 .
[31] Robert S. Webb,et al. A global data set of soil particle size properties , 1991 .
[32] M. Querry,et al. Complex refractive index of limestone in the visible and infrared. , 1978, Applied optics.
[33] T. Ackerman,et al. 3ARM: A FAST, ACCURATE RADIATIVE TRANSFER MODEL FOR USE IN CLIMATE MODELS , 1996 .
[34] L. Gomes,et al. A comparison of characteristics of aerosol from dust storms in central Asia with soil-derived dust from other regions , 1993 .
[35] M. Querry,et al. Optical constants of minerals and other materials from the millimeter to the ultraviolet , 1987 .