Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution

[1]  A. Grimaud,et al.  Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS , 2013 .

[2]  A. Grimaud,et al.  Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts , 2012 .

[3]  A. Yamada,et al.  The nature of lithium battery materials under oxygen evolution reaction conditions. , 2012, Journal of the American Chemical Society.

[4]  Venkatasubramanian Viswanathan,et al.  Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides , 2012 .

[5]  Hubert A. Gasteiger,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. , 2012 .

[6]  James M. Rondinelli,et al.  Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery , 2012 .

[7]  Y. Shao-horn,et al.  Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. , 2012, The journal of physical chemistry letters.

[8]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[9]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[10]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[11]  Jan Rossmeisl,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide , 2011 .

[12]  D. Nocera,et al.  Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. , 2010, Journal of the American Chemical Society.

[13]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[14]  Christian Limberg,et al.  The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis , 2010 .

[15]  J. Kilner,et al.  Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[16]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[17]  M. Risch,et al.  Cobalt-oxo core of a water-oxidizing catalyst film. , 2009, Journal of the American Chemical Society.

[18]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[19]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[20]  R. Service Transportation research. Hydrogen cars: fad or the future? , 2009, Science.

[21]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[22]  J. Jørgensen,et al.  Magnetic ordering inHoBaCo2O5.5 , 2008 .

[23]  J. Jørgensen,et al.  Magnetic ordering in HoBaCo2O5.5 , 2008 .

[24]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[25]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[26]  S. C. Bariloche,et al.  Spin state of Co{sup 3+} and magnetic transitions in RBaCo{sub 2}O{sub 5.50} (R=Pr,Gd): Dependence on rare-earth size , 2006 .

[27]  M. Aranda,et al.  Spin state of Co3+ and magnetic transitions in RBaCo2O5.50 „R=Pr,Gd...: Dependence on rare-earth size , 2006 .

[28]  A. Caneiro,et al.  Tailoring Oxygen Content on PrBaCo2O5+δ Layered Cobaltites , 2005 .

[29]  Y. Ando,et al.  Transport and magnetic properties of GdBaCo2O5+x single crystals : A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping , 2005, cond-mat/0501706.

[30]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[31]  Holger Dau,et al.  X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis , 2003, Analytical and bioanalytical chemistry.

[32]  M. Aranda,et al.  Selective spin-state switch and metal-insulator transition in GdBaCo2O5.5 , 2002, cond-mat/0203378.

[33]  M. Pouchard,et al.  Spin State Behavior in Some Cobaltites (III) and (IV) with Perovskite or Related Structure , 2001 .

[34]  V. Caignaert,et al.  Charge ordering in the layered Co-based perovskite HoBaCo 2 O 5 , 2000 .

[35]  A. Maignan,et al.  Structural and Magnetic Studies of Ordered Oxygen-Deficient PerovskitesLnBaCo2O5+δ, Closely Related to the “112” Structure , 1999 .

[36]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[37]  A. Maignan,et al.  Magnetoresistance in the oxygen deficient LnBaCo2O5.4 (Ln=Eu, Gd) phases , 1997 .

[38]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[42]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[43]  G. Sawatzky,et al.  Oxygen 1s x-ray-absorption edges of transition-metal oxides. , 1989, Physical review. B, Condensed matter.

[44]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[45]  S. Trasatti Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .

[46]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .