Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials.

In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added. 36 h later, cell morphology was analyzed under a light microscope. Nuclearity was scored to determine the cytokinesis-block proliferation index (CBPI). CBPI, based on percentage of mono-, bi- and multi-nucleated cells, reflects cell toxicity and cell cycle delay. For some conditions depending on NM type (TiO(2) and MWCNT) and serum concentration (0%) scoring of CBPI was impossible due to overload of agglomerated NMs. Moreover, where heavy agglomeration occurs, micronuclei (MN) detection and scoring under microscope was prevented. A statistically significant decrease of CBPI was found for ZnO NM suspended in medium in the absence or presence of 10% serum at 25 μg/ml and 50 μg/ml, respectively and for Lys-SiO(2) NM at 3.5 μg/ml in 0% serum. Increase in MN frequency was observed in cells treated in 10% serum with 50 μg/ml ZnO. In 0% serum, the concentrations tested led to high toxicity. No genotoxic effects were induced by Lys-SiO(2) both in the absence or presence of serum up to 5 μg/ml. No toxicity was detected for TiO(2) and MWCNTs in both 10% and 0% serum, up to the dose of 250 μg/ml. Restoration of CBPI comparable to untreated control was shown for cells cultured without serum and treated with 5 μg/ml of Lys-SiO(2) NM pre-incubated in 100% serum. This observation confirms the protective effect of serum on Lys-SiO(2) NM cell toxicity. In conclusion in situ CBPI is proposed as a simple preliminary assay to assess both NMs induced cell toxicity and feasibility of MN scoring under microscope.

[1]  J. West,et al.  Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[2]  Julie W. Fitzpatrick,et al.  Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy , 2005, Particle and Fibre Toxicology.

[3]  J. Schnekenburger,et al.  Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media , 2008 .

[4]  N. Herlin‐Boime,et al.  In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. , 2008, Toxicology.

[5]  Aleksandra Fucic,et al.  Automated image analysis of cytokinesis-blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. , 2008, Mutagenesis.

[6]  Hong Yin,et al.  Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  François Huaux,et al.  Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types , 2010, Nanotoxicology.

[8]  Yinfa Ma,et al.  Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells , 2009 .

[9]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[10]  L. Poulsen,et al.  Acute and Subchronic Airway Inflammation after Intratracheal Instillation of Quartz and Titanium Dioxide Agglomerates in Mice , 2011, TheScientificWorldJournal.

[11]  David M. Brown,et al.  The effects of serum on the toxicity of manufactured nanoparticles. , 2010, Toxicology letters.

[12]  Laetitia Gonzalez,et al.  Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  Alexandra Kroll,et al.  Current in vitro methods in nanoparticle risk assessment: limitations and challenges. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  M. Kirsch‐Volders,et al.  Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models , 2010, Nanotoxicology.

[15]  Alexandra Kroll,et al.  Testing Metal‐Oxide Nanomaterials for Human Safety , 2010, Advanced materials.

[16]  N. Gjerdet,et al.  Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. , 2009, Colloids and surfaces. B, Biointerfaces.

[17]  Alke Petri-Fink,et al.  Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[18]  P. M. Williams,et al.  Confounding experimental considerations in nanogenotoxicology. , 2009, Mutagenesis.

[19]  Saber M Hussain,et al.  Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[20]  H. Krug,et al.  Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. , 2007, Toxicology letters.

[21]  Micheline Kirsch-Volders,et al.  Automated image analysis of micronuclei by IMSTAR for biomonitoring. , 2011, Mutagenesis.

[22]  A. T. Saber,et al.  Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers , 2012, Nanotoxicology.

[23]  M. Fenech,et al.  HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. , 2003, Mutation research.

[24]  T Sofuni,et al.  Report from the In Vitro Micronucleus Assay Working Group. , 2003, Environmental and molecular mutagenesis.

[25]  Iseult Lynch,et al.  Serum heat inactivation affects protein corona composition and nanoparticle uptake. , 2010, Biomaterials.

[26]  Chao Liu,et al.  Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition , 2009, Journal of applied toxicology : JAT.

[27]  T. Oyama,et al.  Oxidative Stress, hogg1 Expression and NF‐κB Activity in Cells Exposed to Low Level Chromium , 2003, Journal of occupational health.

[28]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[29]  M. Kirsch‐Volders,et al.  Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. , 2011, Mutagenesis.

[30]  Wim H de Jong,et al.  The status of in vitro toxicity studies in the risk assessment of nanomaterials. , 2009, Nanomedicine.

[31]  H. Karlsson,et al.  Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. , 2009, Toxicology letters.

[32]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[33]  Yuh-Jeen Huang,et al.  Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. , 2011, The Science of the total environment.

[34]  Laetitia Gonzalez,et al.  Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. , 2009, Small.

[35]  K. Jensen,et al.  Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. , 2010, Toxicological Sciences.

[36]  J. Musarrat,et al.  Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. , 2011, Toxicology.