Generalized polyhedral convex optimization problems

Generalized polyhedral convex optimization problems in locally convex Hausdorff topological vector spaces are studied systematically in this paper. We establish solution existence theorems, necessary and sufficient optimality conditions, weak and strong duality theorems. In particular, we show that the dual problem has the same structure as the primal problem, and the strong duality relation holds under three different sets of conditions.

[1]  X. Long,et al.  Some characterizations of duality for DC optimization with composite functions , 2017 .

[2]  Wen Song,et al.  Linearly perturbed generalized polyhedral normal cone mappings and applications , 2016 .

[3]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[4]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[5]  Nguyen Ngoc Luan Piecewise Linear Vector Optimization Problems on Locally Convex Hausdorff Topological Vector Spaces , 2017, 1705.06893.

[6]  Nguyen Dong Yen,et al.  Quadratic Programming and Affine Variational Inequalities: A Qualitative Study , 2005 .

[7]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[8]  B. Eaves On Quadratic Programming , 1971 .

[9]  Jen-Chih Yao,et al.  On Some Generalized Polyhedral Convex Constructions , 2017, 1705.06892.

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  A. Banerjee Convex Analysis and Optimization , 2006 .

[12]  J. Aubin Set-valued analysis , 1990 .

[13]  Nguyen Ngoc Luan Efficient solutions in generalized linear vector optimization , 2017 .

[14]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[15]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[16]  Nguyen Dong Yen,et al.  A representation of generalized convex polyhedra and applications , 2019, Optimization.

[17]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[18]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[19]  D. Blackwell,et al.  5. Admissible Points of Convex Sets , 1953 .

[20]  Xiang-Kai Sun Regularity conditions characterizing Fenchel–Lagrange duality and Farkas-type results in DC infinite programming , 2014 .

[21]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[22]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[23]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[24]  Helmut Gfrerer,et al.  On Metric Pseudo-(sub)Regularity of Multifunctions and Optimality Conditions for Degenerated Mathematical Programs , 2014 .

[25]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Subregularity and Second-Order Optimality Conditions for a Class of Nonsmooth Mathematical Programs , 2012 .

[26]  Klaudia Beich,et al.  Theory Of Vector Optimization , 2016 .

[27]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[28]  Boris S. Mordukhovich,et al.  Lipschitzian stability of parametric variational inequalities over generalized polyhedra in Banach s , 2011 .

[29]  Dimitri P. Bertsekas,et al.  Convex Optimization Theory , 2009 .

[30]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[31]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[32]  J. Hugh Ellis,et al.  Multiobjective Linear Programming Model for Acid Rain Abatement , 1987 .

[33]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .