Influence of enhanced CO2 on growth and photosynthesis of the red algaeGracilaria sp. andG. chilensis
暂无分享,去创建一个
K. Asada | K. Gao | M. Kiyohara | M. Kiyohara | K. Asada | K. Gao | Y. Aruga | Y. Aruga | Kunshan Gao | Kozi Asada
[1] Toshiaki Ishihara,et al. Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations , 1991, Journal of Applied Phycology.
[2] K. Asada,et al. Photorespiration and CO2 fixation in the red alga Porphyra yezoensis Ueda , 1992 .
[3] S. Miyachi,et al. The function of carbonic anhydrase in aquatic photosynthesis , 1989 .
[4] K. Gao,et al. Effects of Nutrients on the Photosynthesis of Sargassum thunbergii , 1990 .
[5] M. Pedersen,et al. Growth of the Red Alga Gracilaria tenuistipitata at High pH. Influence of Some Environmental Factors and Correlation to an Increased Carbonic-anhydrase Activity , 1992 .
[6] S. Beer,et al. Photosynthetic carbon acquisition in the red alga Gracilaria conferta , 1992 .
[7] B. Tilbrook,et al. Oceanic Uptake of Fossil Fuel CO2: Carbon-13 Evidence , 1992, Science.
[8] A. M. Johnston,et al. Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus , 1990 .
[9] J. Mclachlan,et al. Gracilaria cornea, the correct name for the western Atlantic alga hitherto known as G. debilis (Rhodophyta, Gigartinales) , 1986 .
[10] D. Hanelt. Photoinhibiton of photosynthesis in marine macrophytes of the South China Sea , 1992 .
[11] K. Asada,et al. Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations , 2004, Journal of Applied Phycology.
[12] R. Radmer,et al. [52] Measurement of the oxygen cycle: The mass spectrometric analysis of gases dissolved in a liquid phase , 1980 .
[13] J. Raven. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature , 1991 .
[14] J. Raven,et al. Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications , 2004, Oecologia.
[15] J. Mclachlan,et al. Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration , 1985 .
[16] M. Pedersen,et al. INDUCIBLE MECHANISMS FOR HCO3– UTILIZATION AND REPRESSION OF PHOTORESPIRATION IN PROTOPLASTS AND THALLI OF THREE SPECIES OF ULVA (CHLOROPHYTA) 1 , 1993 .
[17] S. Maberly,et al. Distribution of carbonic anhydrase in British marine macroalgae , 1989, Oecologia.
[18] S. Maberly. EXOGENOUS SOURCES OF INORGANIC CARBON FOR PHOTOSYNTHESIS BY MARINE MACROALGAE 1 , 1990 .
[19] D. Graham,et al. Carbonate Dehydratase in Marine Organisms of the Great Barrier Reef , 1976 .
[20] C. Osmond,et al. INORGANIC CARBON LIMITATION OF PHOTOSYNTHESIS IN ULVA ROTUNDATA (CHLOROPHYTA) 1 , 1991 .
[21] J. Mclachlan,et al. Gracilaria chilensis sp.nov. (Rhodophyta, Gigartinales), from Pacific South America , 1986 .
[22] M. Pedersen,et al. Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata , 1989 .
[23] R. Bidwell,et al. Carbonic Anhydrase-Dependent Inorganic Carbon Uptake by the Red Macroalga, Chondrus crispus. , 1987, Plant physiology.
[24] B. Lapointe. Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study , 1987 .
[25] L. Provasoli. Media and prospects for the cultivation of marine algae , 1966 .
[26] J. R. Coleman. The molecular and biochemical analyses of CO2‐concentrating mechanisms in cyanobacteria and microalgae , 1991 .