Flight path reconstruction – A comparison of nonlinear Kalman filter and smoother algorithms

Abstract This paper is concerned with the choice of a state-estimation algorithm to perform the flight path reconstruction (FPR) procedure. Both simulated data and experimental data collected from a sailplane aircraft are used to illustrate the methods investigated. In both cases the unscented Kalman filter (UKF) is employed to determine the biases associated to each accelerometer and gyro in the inertial measurement unit (IMU), together with high sampling-rate trajectory reconstruction from low frequency sampled GPS data. A comparison between UKF and the well-known extended Kalman filter (EKF) shows that the former outperforms the latter in the presence of high noise level and large initialization error, sensitivity to the tuning of covariance matrices, and joint estimation of IMU bias terms. Furthermore, substantial accuracy improvement due to the adoption of the unscented Kalman smoother (UKS) for high sampling-rate FPR is quantified, whereas the same cannot be claimed on the use of an iterated filtering approach.

[1]  V. Klein,et al.  Compatibility check of measured aircraft responses using kinematic equations and extended Kalman filter , 1977 .

[2]  M. Curvo Estimation of aircraft aerodynamic derivatives using Extended Kalman Filter , 2000 .

[3]  K. Alfriend,et al.  Adaptive Sigma Point Filtering for State and Parameter Estimation , 2004 .

[4]  Konrad Reif,et al.  Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..

[5]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[6]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[7]  C. W. Chan,et al.  Author's reply to "Comments on 'Performance evaluation of UKF-based nonlinear filtering"' , 2007, Autom..

[8]  Dan Simon,et al.  A comparison of filtering approaches for aircraft engine health estimation , 2008 .

[9]  Ravindra Jategaonkar,et al.  Aerodynamic Modeling and System Identification from Flight Data , 2005, Journal of Aerospace Sciences and Technologies.

[10]  Elder M. Hemerly,et al.  Adaptive Stochastic Filtering for Online Aircraft Flight Path Reconstruction , 2007 .

[11]  D.S. Bernstein,et al.  A Comparison of the Extended and Unscented Kalman Filters for Discrete-Time Systems with Nondifferentiable Dynamics , 2007, 2007 American Control Conference.

[12]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[13]  Elder M. Hemerly,et al.  Flight path reconstruction and parameter estimation using output-error method , 2006 .

[14]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[15]  J. A. Mulder,et al.  NON-LINEAR AIRCRAFT FLIGHT PATH RECONSTRUCTION REVIEW AND NEW ADVANCES , 1999 .

[16]  Elder M. Hemerly,et al.  Aircraft parameter estimation using output-error methods , 2006 .

[17]  D.S. Bernstein,et al.  Spacecraft tracking using sampled-data Kalman filters , 2008, IEEE Control Systems.

[18]  R. V. Jategaonkar,et al.  ESTIMA – an integrated software tool for nonlinear parameter estimation , 2002 .

[19]  Paulo Henriques Iscold Andrade de Oliveira,et al.  Development of a Light Aircraft Flight Test Equipment , 2005 .

[20]  A. Farina,et al.  Tracking a ballistic target: comparison of several nonlinear filters , 2002 .

[21]  Leonardo A. B. Tôrres,et al.  Using data-driven discrete-time models and the unscented Kalman filter to estimate unobserved variables of nonlinear systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[23]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[24]  John L. Crassidis Sigma-point Kalman filtering for integrated GPS and inertial navigation , 2006 .

[25]  Rudolph van der Merwe,et al.  Dual Estimation and the Unscented Transformation , 1999, NIPS.

[26]  Jiancheng Fang,et al.  An autonomous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion , 2007 .

[27]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[28]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[29]  Jörg F. Wagner,et al.  Integrating satellite and inertial navigation—conventional and new fusion approaches , 2001 .

[30]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[31]  Marc Rauw,et al.  FDC 1.2 - A Simulink Toolbox for Flight Dynamics and Control Analysis , 2001 .

[32]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[33]  Shelby Brunke,et al.  Square Root Sigma Point Filtering for Real-Time, Nonlinear Estimation , 2004 .

[34]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[35]  Jamshaid Ali,et al.  SINS/ANS integration for augmented performance navigation solution using unscented Kalman filtering , 2006 .

[36]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[37]  Fredrik de Try Flight Path Reconstruction Using Numerical Optimization , 2004 .

[38]  Yuanxin Wu,et al.  Comments on "Performance evaluation of UKF-based nonlinear filtering" , 2007, Autom..