From (bio)Molecules to Biohybrid Materials with the Click Chemistry Approach

In order to construct biologically active materials for applications in nanotechnology and medicine, materials scientists have extensively explored the use of nature-derived building blocks, in particular amino acids, carbohydrates, and lipids. Typically, these building blocks are assembled into larger arrays, or attached to synthetic scaffolds or other biomolecules, in such a way that novel biohybrid materials can be obtained with new or improved properties. To ensure that the original activity of the building blocks herein is preserved, the construction of biohybrid materials needs to proceed in a well-defined manner employing selective coupling techniques with a high functional group tolerance. Consequently, the concept of “click chemistry” has rapidly established a prominent role in the synthesis of these types of biologically active materials. In particular, the Cucatalyzed Azide-Alkyne [3 þ 2] Cycloaddition (CuAAC) has proven to be extremely valuable to many researchers in the field of biohybrid materials science, including our own groups. This mini-review will focus on the application of the CuAAC in the construction of biohybrid materials and will discuss our recent efforts as well as related work from other groups.

[1]  Krzysztof Matyjaszewski,et al.  Synthesis of Star Polymers by a Combination of ATRP and the “Click” Coupling Method , 2006 .

[2]  Francesco M Veronese,et al.  Polyethylene glycol-superoxide dismutase, a conjugate in search of exploitation. , 2002, Advanced drug delivery reviews.

[3]  Po-Chiao Lin,et al.  Site-specific protein modification through Cu(I)-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. , 2006, Angewandte Chemie.

[4]  K. Matyjaszewski,et al.  Synthesis of well‐defined azido and amino end‐functionalized polystyrene by atom transfer radical polymerization , 1997 .

[5]  R. Field,et al.  Recent applications of the Cu(I)-catalysed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. , 2007, Organic & biomolecular chemistry.

[6]  K. Matyjaszewski,et al.  Highly Efficient “Click” Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP , 2005 .

[7]  W. Binder,et al.  Combining Ring-Opening Metathesis Polymerization (ROMP) with Sharpless-Type “Click” Reactions: An Easy Method for the Preparation of Side Chain Functionalized Poly(oxynorbornenes) , 2004 .

[8]  W. S. Graswinckel,et al.  β-Helical Polymers from Isocyanopeptides , 2001, Science.

[9]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[10]  Raymond A. Dwek,et al.  Glycobiology: Toward Understanding the Function of Sugars. , 1996, Chemical reviews.

[11]  Donald A Tomalia,et al.  Dendrimers in biomedical applications--reflections on the field. , 2005, Advanced drug delivery reviews.

[12]  Scott M. Grayson,et al.  An efficient route to well-defined macrocyclic polymers via "click" cyclization. , 2006, Journal of the American Chemical Society.

[13]  C. Bertozzi,et al.  Mechanistic investigation of the staudinger ligation. , 2005, Journal of the American Chemical Society.

[14]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[15]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[16]  C. Hawker,et al.  Multivalent, bifunctional dendrimers prepared by click chemistry. , 2005, Chemical communications.

[17]  I. Rodríguez-Meizoso,et al.  A Click Approach to Unprotected Glycodendrimers , 2006 .

[18]  R. Nolte,et al.  Synthesis, characterisation and chiroptical properties of ‘click’able polyisocyanopeptides , 2007 .

[19]  R. Spiro Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. , 2002, Glycobiology.

[20]  F. Santoyo-González,et al.  Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. , 2003, Organic letters.

[21]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[22]  K. Matyjaszewski,et al.  Gradient polymer elution chromatographic analysis of α,ω-dihydroxypolystyrene synthesized via ATRP and click chemistry , 2005 .

[23]  R. Breinbauer,et al.  Azide–Alkyne Coupling: A Powerful Reaction for Bioconjugate Chemistry , 2003, Chembiochem : a European journal of chemical biology.

[24]  J. M. Hannink,et al.  Protein-polymer hybrid amphiphiles , 2001 .

[25]  Alessandro Massi,et al.  Assembling heterocycle-tethered C-glycosyl and alpha-amino acid residues via 1,3-dipolar cycloaddition reactions. , 2004, Organic letters.

[26]  Q. Wang,et al.  Selective dye-labeling of newly synthesized proteins in bacterial cells. , 2005, Journal of the American Chemical Society.

[27]  P. Caliceti,et al.  Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. , 2003, Advanced drug delivery reviews.

[28]  Glycopeptide Synthesis and the Effects of Glycosylation on Protein Structure and Activity , 2000, Chembiochem : a European journal of chemical biology.

[29]  M. Finn,et al.  Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. , 2005, Bioconjugate chemistry.

[30]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[31]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[32]  Krzysztof Matyjaszewski,et al.  Step-Growth “Click” Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization , 2005 .

[33]  Juan Correa,et al.  "Clickable" PEG-dendritic block copolymers. , 2006, Biomacromolecules.

[34]  C. Hawker,et al.  Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. , 2005, Journal of the American Chemical Society.

[35]  Veronese Fm,et al.  Introduction and overview of peptide and protein pegylation. , 2002 .

[36]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[37]  H. Börner,et al.  Combining ATRP and “Click” Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates , 2006 .

[38]  K. Matyjaszewski,et al.  END GROUP TRANSFORMATION OF POLYMERS PREPARED BY ATRP, SUBSTITUTION TO AZIDES , 1999 .

[39]  R. Nolte,et al.  Metal‐Free Triazole Formation as a Tool for Bioconjugation , 2007, Chembiochem : a European journal of chemical biology.

[40]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[41]  J. V. Hest,et al.  Modular synthesis of ABC type block copolymers by “click” chemistry , 2007 .

[42]  A. Hoffman,et al.  Bioconjugates of smart polymers and proteins: synthesis and applications , 2004 .

[43]  P. Schultz,et al.  Site-specific PEGylation of proteins containing unnatural amino acids. , 2004, Bioorganic & medicinal chemistry letters.

[44]  F. Rutjes,et al.  Expedient synthesis of triazole-linked glycosyl amino acids and peptides. , 2004, Organic letters.

[45]  Lei Tao,et al.  One-pot tandem living radical polymerisation-Huisgens cycloaddition process ("click") catalysed by N-alkyl-2-pyridylmethanimine/Cu(I)Br complexes. , 2005, Chemical communications.

[46]  Hans G. Börner,et al.  Combining Atom Transfer Radical Polymerization and Click Chemistry: A Versatile Method for the Preparation of End‐Functional Polymers , 2005 .

[47]  R. Duncan The dawning era of polymer therapeutics , 2003, Nature Reviews Drug Discovery.

[48]  Siqi Li,et al.  Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. , 2007, Chemical communications.

[49]  K. Matyjaszewski,et al.  Functional polymers by atom transfer radical polymerization , 2001 .

[50]  R. Nolte,et al.  Self-assembled architectures from biohybrid triblock copolymers. , 2007, Journal of the American Chemical Society.

[51]  K. Kirshenbaum,et al.  Clickity-click: highly functionalized peptoid oligomers generated by sequential conjugation reactions on solid-phase support. , 2006, Organic & biomolecular chemistry.

[52]  W. Binder,et al.  ‘Click’ Chemistry in Polymer and Materials Science , 2007 .

[53]  C. Warren,et al.  Glycopeptides and related compounds : synthesis, analysis, and applications , 1997 .

[54]  G. Mantovani,et al.  Formation of giant amphiphiles by post-functionalization of hydrophilic protein–polymer conjugates , 2007 .

[55]  Marianne Manchester,et al.  Viruses and their uses in nanotechnology , 2006 .

[56]  Jan C M van Hest,et al.  Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction. , 2005, Chemical communications.

[57]  M. Finn,et al.  Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. , 2005, Chemical communications.

[58]  Krzysztof Matyjaszewski,et al.  Comprar Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications, 4 Volume Set | Krzysztof Matyjaszewski | 9783527314461 | Wiley , 2007 .

[59]  H. Kunz Synthesis of Glycopeptides, Partial Structures of Biological Recognition Components [New Synthetic Methods (67)] , 1987 .

[60]  H. Maynard,et al.  Synthesis of protein-polymer conjugates. , 2007, Organic & biomolecular chemistry.

[61]  Todd Emrick,et al.  PEG- and peptide-grafted aliphatic polyesters by click chemistry. , 2005, Journal of the American Chemical Society.

[62]  Arwin J. Brouwer,et al.  High‐Yielding Microwave‐Assisted Synthesis of Triazole‐Linked Glycodendrimers by Copper‐Catalyzed [3+2] Cycloaddition , 2005 .

[63]  V. Ladmiral,et al.  Synthesis of neoglycopolymers by a combination of "click chemistry" and living radical polymerization. , 2006, Journal of the American Chemical Society.

[64]  E. Schuman,et al.  Fluorescence visualization of newly synthesized proteins in mammalian cells. , 2006, Angewandte Chemie.

[65]  H. Waldmann,et al.  Diels-Alder ligation and surface immobilization of proteins. , 2005, Angewandte Chemie.

[66]  R. Sijbesma,et al.  Catalyst recycling via hydrogen-bonding-based affinity tags. , 2006, Organic letters.

[67]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[68]  R. Nolte,et al.  Aggregation behavior of giant amphiphiles prepared by cofactor reconstitution. , 2006, Chemistry.

[69]  J. M. Harris,et al.  Effect of pegylation on pharmaceuticals , 2003, Nature Reviews Drug Discovery.

[70]  Thomas Carell,et al.  Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. , 2006, Organic letters.

[71]  Peng Wu,et al.  Catalytic Azide—Alkyne Cycloaddition: Reactivity and Applications , 2007 .

[72]  R. Nolte,et al.  Lipase polystyrene giant amphiphiles. , 2002, Journal of the American Chemical Society.

[73]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[74]  M. Finn,et al.  Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. , 2004, Chemistry & biology.

[75]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[76]  Jean-François Lutz,et al.  1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. , 2007, Angewandte Chemie.

[77]  Johan Hofkens,et al.  Synthesis and single enzyme activity of a clicked lipase-BSA hetero-dimer. , 2006, Chemical communications.

[78]  C. Hawker,et al.  Fluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle. , 2006, Chemistry.

[79]  J. M. Hannink,et al.  Giant amphiphiles by cofactor reconstitution. , 2002, Angewandte Chemie.

[80]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[81]  D. Tirrell,et al.  Presentation and detection of azide functionality in bacterial cell surface proteins. , 2004, Journal of the American Chemical Society.

[82]  David A. Tirrell,et al.  Non‐Canonical Amino Acids in Protein Polymer Design , 2007 .

[83]  J. V. van Hest,et al.  Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. , 2005, Chemical communications.