Optimal shape design for fluid flow using topological perturbation technique

This paper is concerned with an optimal shape design problem in fluid mechanics. The fluid flow is governed by the Stokes equations. The theoretical analysis and the numerical simulation are discussed in two and three-dimensional cases. The proposed approach is based on a sensitivity analysis of a design function with respect to the insertion of a small obstacle in the fluid flow domain. An asymptotic expansion is derived for a large class of cost functions using small topological perturbation technique. A fast and accurate numerical algorithm is proposed. The efficiency of the method is illustrated by some numerical examples.

[1]  C. Hickox,et al.  Simulation of Coupled Viscous and Porous Flow Problems , 1996 .

[2]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[3]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[4]  S. Amstutz THE TOPOLOGICAL ASYMPTOTIC FOR THE NAVIER-STOKES EQUATIONS , 2005 .

[5]  A. Evgrafov The Limits of Porous Materials in the Topology Optimization of Stokes Flows , 2005 .

[6]  Ph. Guillaume,et al.  Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..

[7]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[8]  Do Wan Kim,et al.  Minimum drag shape in two‐dimensional viscous flow , 1995 .

[9]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[10]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[11]  Bessem Samet,et al.  The Topological Asymptotic for the Helmholtz Equation , 2003, SIAM J. Control. Optim..

[12]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[13]  Erik Lund,et al.  Shape Optimization of Fluid-Structure Interaction Problems Using Two-Equation Turbulence Models , 2002 .

[14]  Maatoug Hassine,et al.  From Differential Calculus to 0-1 Topological Optimization , 2007, SIAM J. Control. Optim..

[15]  James K. Guest,et al.  Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .

[16]  A. Ben Abda,et al.  Topological Sensitivity Analysis for the Location of Small Cavities in Stokes Flow , 2009, SIAM J. Control. Optim..

[17]  Maatoug Hassine,et al.  The topological asymptotic expansion for the Quasi-Stokes problem , 2004 .

[18]  M. Heinkenschloss,et al.  Airfoil Design by an All-at-once Method* , 1998 .

[19]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[20]  Bui An Ton,et al.  Optimal Shape Control Problem for the Navier--Stokes Equations , 2002, SIAM J. Control. Optim..

[21]  Max D. Gunzburger,et al.  On a shape control problem for the stationary Navier-Stokes equations , 2000 .

[22]  M. Hassine,et al.  Removing holes in topological shape optimization , 2008 .

[23]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[24]  Roland Glowinski,et al.  On the numerical computation of the minimum-drag profile in laminar flow , 1975, Journal of Fluid Mechanics.

[25]  Vijay Modi,et al.  Optimum plane diffusers in laminar flow , 1992, Journal of Fluid Mechanics.