On the Efficient Decoding of Algebraic-Geometric Codes

This talk is intended to give a survey on the existing literature on the decoding of algebraic-geometric codes. Although the motivation originally was to find an efficient decoding algorithm for algebraic-geometric codes, the latest results give algorithms which can be explained purely in terms of linear algebra. We will treat the following subjects: 1. The decoding problem 2. Decoding by error location 3. Decoding by error location of algebraic-geometric codes 4. Majority coset decoding 5. Decoding algebraic-geometric codes by solving the key equation 6. Improvements of the complexity

[1]  T. R. N. Rao,et al.  A simple approach for construction of algebraic-geometric codes from affine plane curves , 1993, IEEE Trans. Inf. Theory.

[2]  Ruud Pellikaan,et al.  Which linear codes are algebraic-geometric? , 1991, IEEE Trans. Inf. Theory.

[3]  Shojiro Sakata Decoding binary 2-D cyclic codes by the 2-D Berlekamp-Massey algorithm , 1991, IEEE Trans. Inf. Theory.

[4]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.

[5]  J. A. Thiong-Ly,et al.  Decoding of codes on the Klein Quartic , 1990, EUROCODE.

[6]  V. D. Goppa ALGEBRAICO-GEOMETRIC CODES , 1983 .

[7]  H. J. Tiersma Remarks on codes from Hermitian curves , 1987, IEEE Trans. Inf. Theory.

[8]  Iwan M. Duursma Algebraic decoding using special divisors , 1993, IEEE Trans. Inf. Theory.

[9]  Dirk Ehrhard,et al.  Decoding Algebraic-Geometric Codes by solving a key equation , 1992 .

[10]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[11]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[12]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[13]  Tom Høholdt,et al.  On the number of correctable errors for some AG-codes , 1993, IEEE Trans. Inf. Theory.

[14]  Moni Naor,et al.  The hardness of decoding linear codes with preprocessing , 1990, IEEE Trans. Inf. Theory.

[15]  Tom Høholdt,et al.  Fast decoding of codes from algebraic plane curves , 1992, IEEE Trans. Inf. Theory.

[16]  Jacobus H. van Lint,et al.  Generalized Reed - Solomon codes from algebraic geometry , 1987, IEEE Trans. Inf. Theory.

[17]  Serge G. Vladut,et al.  On the decoding of algebraic-geometric codes over Fq for q>=16 , 1990, IEEE Trans. Inf. Theory.

[18]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[19]  Ian F. Blake,et al.  Hermitian codes as generalized Reed-Solomon codes , 1992, Des. Codes Cryptogr..

[20]  Shojiro Sakata,et al.  Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array , 1988, J. Symb. Comput..

[21]  Dominique Le Brigand,et al.  Decoding of codes on hyperelliptic curves , 1990, EUROCODE.

[22]  A. Weil,et al.  Review: C. Chevalley, Introduction to the theory of algebraic functions of one variable , 1951 .

[23]  Ruud Pellikaan,et al.  Decoding geometric Goppa codes using an extra place , 1992, IEEE Trans. Inf. Theory.

[24]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[25]  Richard M. Wilson,et al.  On the minimum distance of cyclic codes , 1986, IEEE Trans. Inf. Theory.

[26]  V. D. Goppa Geometry and Codes , 1988 .

[27]  Ruud Pellikaan,et al.  ALGEBRAIC CURVES OVER FINITE FIELDS: (Cambridge Tracts in Mathematics 97) , 1992 .

[28]  Gui Liang Feng,et al.  Decoding cyclic and BCH codes up to actual minimum distance using nonrecurrent syndrome dependence relations , 1991, IEEE Trans. Inf. Theory.

[29]  A.N. Skorobogatov,et al.  On the decoding of algebraic-geometric codes , 1990, IEEE Trans. Inf. Theory.

[30]  B.-Z. Shen,et al.  Solving a Congruence on a Graded Algebra by a Subresultant Sequence and its Application , 1992, J. Symb. Comput..

[31]  Dirk Ehrhard,et al.  Achieving the designed error capacity in decoding algebraic-geometric codes , 1993, IEEE Trans. Inf. Theory.

[32]  Shojiro Sakata,et al.  On determining the independent point set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals , 1981, IEEE Trans. Inf. Theory.

[33]  Henning Stichtenoth,et al.  A note on Hermitian codes over GF(q2) , 1988, IEEE Trans. Inf. Theory.

[34]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[35]  Patrick A. H. Bours,et al.  Algebraic decoding beyond BCH of some binary cyclic codes, when e>BCH , 1990, IEEE Trans. Inf. Theory.

[36]  Iwan M. Duursma,et al.  Error-locating pairs for cyclic codes , 1994, IEEE Trans. Inf. Theory.

[37]  V. D. Goppa Codes and information , 1984 .

[38]  Ruud Pellikaan,et al.  On decoding by error location and dependent sets of error positions , 1992, Discret. Math..

[39]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[40]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[41]  P. Carbonne,et al.  Zeta Functions of Some Curves and Minimal Exponent for Pellikaan’s Decoding Algorithm of Algebraic-Geometric Codes , 1993 .

[42]  S. C. Porter,et al.  Decoding codes arising from Goppa's construction on algebraic curves , 1988 .

[43]  Ruud Pellikaan,et al.  On a decoding algorithm for codes on maximal curves , 1989, IEEE Trans. Inf. Theory.

[44]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[45]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[46]  Shojiro Sakata,et al.  Extension of the Berlekamp-Massey Algorithm to N Dimensions , 1990, Inf. Comput..

[47]  Tom Høholdt,et al.  Construction and decoding of a class of algebraic geometry codes , 1989, IEEE Trans. Inf. Theory.