Methane emissions from terrestrial plants under aerobic conditions

[1]  Thomas Röckmann,et al.  New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios , 2005 .

[2]  D. Etheridge,et al.  Unexpected Changes to the Global Methane Budget over the Past 2000 Years , 2005, Science.

[3]  P. Gupta,et al.  Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India. , 2005, Chemosphere.

[4]  J. F. Meirink,et al.  Assessing Methane Emissions from Global Space-Borne Observations , 2005, Science.

[5]  W. C. Mcroberts,et al.  Carbon isotope anomaly in the major plant C-1 pool and its global biogeochemical implications , 2004 .

[6]  D. Beerling,et al.  Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  P. M. Lang,et al.  Atmospheric methane levels off: Temporary pause or a new steady‐state? , 2003 .

[8]  Robert M. Kalin,et al.  Chloride Methylation by Plant Pectin: An Efficient Environmentally Significant Process , 2003, Science.

[9]  A. Mather,et al.  Global Forest Resources Assessment 2000 Main Report: FAO Forestry Paper 140, FAO, Rome, 2001, xxvii+479pp, price $40.00, ISBN 92 5 104642-5, ISSN 0258-6150 , 2003 .

[10]  R. Cicerone,et al.  Photosynthate allocations in rice plants: Food production or atmospheric methane? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[12]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[13]  J. Lelieveld,et al.  Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands , 2000 .

[14]  Sander Houweling,et al.  The modeling of tropospheric methane: How well can point measurements be reproduced by a global model? , 2000 .

[15]  M. Manning,et al.  The trend in atmospheric methane δ13C and implications for isotopic constraints on the global methane budget , 2000 .

[16]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[17]  E. Dlugokencky,et al.  The isotopic composition of atmospheric methane , 1999 .

[18]  E. J. Dlugokencky,et al.  Continuing decline in the growth rate of the atmospheric methane burden , 1998, Nature.

[19]  Paul J. Crutzen,et al.  Changing concentration, lifetime and climate forcing of atmospheric methane , 1998 .

[20]  David C. Lowe,et al.  Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources , 1994 .

[21]  Robert C. Harriss,et al.  Review and assessment of methane emissions from wetlands , 1993 .