Hardware-accelerated simulated radiography

We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

[1]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[2]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .

[3]  David S. Ebert,et al.  Projecting tetrahedra without rendering artifacts , 2004, IEEE Visualization 2004.

[4]  P CallahanSteven,et al.  Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering , 2005 .

[5]  Cláudio T. Silva,et al.  Hardware-assisted visibility sorting for unstructured volume rendering , 2005, IEEE Transactions on Visualization and Computer Graphics.

[6]  Thomas Ertl,et al.  Texture-encoded tetrahedral strips , 2004 .

[7]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[8]  Thomas Ertl,et al.  Cell projection of convex polyhedra , 2003 .

[9]  Nelson L. Max,et al.  Image-space visibility ordering for cell projection volume rendering of unstructured data , 2004, IEEE Transactions on Visualization and Computer Graphics.

[10]  Liu You,et al.  Real-Time 3D Fluid Simulation on GPU with Complex Obstacles , 2006 .

[11]  D. O. Thompson,et al.  Review of Progress in Quantitative Nondestructive Evaluation , 1985 .

[12]  Nelson L. Max Hexahedron Projection for Curvilinear Grids , 2007, J. Graph. Tools.

[13]  Martin Kraus,et al.  Hardware-based ray casting for tetrahedral meshes , 2003, IEEE Visualization, 2003. VIS 2003..

[14]  Nelson L. Max,et al.  Approximate volume rendering for curvilinear and unstructured grids by hardware-assisted polyhedron projection , 2000, Int. J. Imaging Syst. Technol..

[15]  B. Chalmond,et al.  Moderato: A Monte-Carlo radiographic simulation , 2000 .

[16]  Nicolas Freud,et al.  A computer code to simulate X-ray imaging techniques , 2000 .

[17]  A. Glière,et al.  Sindbad: From CAD Model to Synthetic Radiographs , 1998 .

[18]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[19]  J. Krüger,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, ACM Trans. Graph..

[20]  J. H. Hubbell,et al.  EPDL97: the evaluated photo data library `97 version , 1997 .