Numerical simulation of nonoscillatory mirror waves at the Earth's magnetosheath

The generation of nonoscillatory mirror waves is studied using a one-dimensional periodic hybrid electromagnetic simulation. The ion dynamics are treated exactly; the electrons are approximated as a finite pressure, massless fluid. Compression of the flux tubes in the magnetosheath causes a large pressure anisotropy, and it has been proposed that this anisotropy drives a mirror instability. The mirror waves have been identified by large amplitude fluctuations of the magnetic field, anticorrelated with pressure fluctuations. The simulations are initiated in a homogeneous high beta (beta = 2.5) plasma with the ambient magnetic field at various angles to the simulation axis. It is found that ion cyclotron waves are also driven by the pressure anisotropy, in competition with the nonoscillatory mirror waves. Simulations indicate that in a pure ¹H+ plasma the much faster growing ion cyclotron waves absorb the free energy in the anisotropy to the extent that mirror waves should not be observed. Analysis of the dispersion relations of mirror waves and ion cyclotron waves in the multi-component plasma indicates that 4He2+ and 16O6+ ions in the solar wind should stabilize the ion cyclotron waves sufficiently that the mirror waves become the dominant instability.

[1]  Subrahmanyan Chandrasekhar,et al.  The stability of the pinch , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  D. Baker,et al.  Lion roars and nonoscillatory drift mirror waves in the magnetosheath , 1982 .

[3]  B. Tsurutani,et al.  The generation mechanism for magnetosheath lion roars , 1981, Nature.

[4]  Edward J. Smith,et al.  Magnetic emissions in the magnetosheath at frequencies near 100 Hz , 1969 .

[5]  G. Parks,et al.  The coupling of Alfvén and compressional waves , 1978 .

[6]  R. Sagdeev,et al.  Collisionless shock waves in high β plasmas: 1 , 1967 .

[7]  Lou‐Chuang Lee,et al.  Rotational discontinuities and the structure of the magnetopause , 1983 .

[8]  S. Bame Spacecraft Observations of the Solar Wind Composition , 1972 .

[9]  A. Hasegawa Drift Mirror Instability in the Magnetosphere , 1969 .

[10]  D. Fairfield The ordered magnetic field of the magnetosheath , 1967 .

[11]  W. Hughes,et al.  Theory of hydromagnetic waves in the magnetosphere , 1983 .

[12]  V. L. Patel,et al.  The coupling of shear Alfvén and compressional waves in high‐β magnetospheric plasma , 1983 .

[13]  T. H. Stix,et al.  The Theory Of Plasma Waves , 1962 .

[14]  S. Migliuolo,et al.  Temperature gradient effects on the stability of magnetospheric plasmas , 1981 .

[15]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[16]  S. Migliuolo High‐β theory of low‐frequency magnetic pulsations , 1983 .

[17]  Charles F. Kennel,et al.  LIMIT ON STABLY TRAPPED PARTICLE FLUXES , 1966 .

[18]  D. Williams,et al.  Nonlinear development of the ion-cyclotron electromagnetic instability , 1976, Journal of Plasma Physics.

[19]  J. Byers,et al.  PERPENDICULARLY PROPAGATING PLASMA CYCLOTRON INSTABILITIES SIMULATED WITH A ONE-DIMENSIONAL COMPUTER MODEL. , 1970 .

[20]  Jeremiah Brackbill,et al.  Collisionless dissipation processes in quasi‐parallel shocks , 1983 .

[21]  A. Hasegawa Plasma instabilities and nonlinear effects , 1975 .

[22]  V. L. Patel,et al.  Drift wave instabilities in a high β multispecies plasma , 1984 .

[23]  D. Hunten,et al.  Depletion of solar wind plasma near a planetary boundary , 1976 .

[24]  A. N. Hall Finite ion Larmor radius modifications to the firehose and mirror instabilities , 1979, Journal of Plasma Physics.

[25]  S. Migliuolo,et al.  Alfven waves and drift compressional modes in multispecies plasmas , 1980 .

[26]  A. Hasegawa,et al.  Drift mirror instability in the magnetosphere: Particle and field oscillations and electron heating , 1969 .

[27]  S. Peter Gary,et al.  Proton temperature anisotropy instabilities in the solar wind , 1976 .

[28]  Edward J. Smith,et al.  Magnetosheath lion roars , 1976 .

[29]  A. Hasegawa,et al.  High β plasma instabilities and storm time geomagnetic pulsations , 1975 .

[30]  J. Hirshberg Solar wind helium enhancements following major solar flares , 1972 .

[31]  S. Cuperman Electromagnetic kinetic instabilities in multicomponent space plasmas: theoretical predictions and computer simulation experiments , 1981 .

[32]  A. Barnes Collisionless Damping of Hydromagnetic Waves , 1966 .

[33]  Jacques Denavit,et al.  Numerical simulation of plasmas with periodic smoothing in phase space , 1972 .

[34]  A. Hundhausen,et al.  Solar wind ions: 56Fe+8 to 56Fe+12, 28Si+7, 28Si+8, 28Si+9, and 16O+6 , 1970 .

[35]  J. Ogden,et al.  Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high‐beta plasmas , 1975 .

[36]  A. Wolfe,et al.  Large‐amplitude hydromagnetic waves in the inner magnetosheath , 1970 .

[37]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  D. Gallagher Short‐wavelength electrostatic waves in the Earth's magnetosheath , 1982 .

[39]  J. Horng,et al.  Physical structure of hydromagnetic disturbances in the inner magnetosheath , 1971 .

[40]  T. Eastman,et al.  Plasma waves near the magnetopause , 1982 .

[41]  J. Cornwall,et al.  ELECTROMAGNETIC ION-CYCLOTRON INSTABILITIES IN MULTICOMPONENT MAGNETOSPHERIC PLASMAS. Research Report, March--July 1971. , 1971 .

[42]  Y. Omura,et al.  Particle simulation of electromagnetic waves and its application to space plasmas. , 1985 .

[43]  A. Hundhausen,et al.  Solar Wind Ion Composition , 1968 .

[44]  G. Siscoe,et al.  A mechanism for pressure anisotropy and mirror instability in the dayside magnetosheath , 1977 .

[45]  J. Horwitz,et al.  New advances in thermal plasma research , 1980 .

[46]  B. Tsurutani,et al.  Drift mirror Mode waves in the distant (X ≃ 200 Re) magnetosheath , 1984 .

[47]  Masayoshi Tajiri,et al.  Propagation of Hydromagnetic Waves in Collisionless Plasma. II. Kinetic Approach , 1964 .