Indirect Adaptive learning of Acceleration feedback control for Chained Multiple Mass-Spring-Damper Systems

An indirect iterative learning algorithm has shown to be able to update the parameters of an acceleration feedback controller for flexible manipulators. The fine estimation of the masses of a chain of mass-spring-dampers units allows the simultaneous tuning of both the feedback controller and the trajectory generation. This algorithm has been validated on an industrial robot arm.

[1]  Peng-Yung Woo,et al.  Singularity-free indirect iterative learning control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[2]  Yoshiaki Kakino,et al.  A Servo Parameter Tuning Method For HighspeedNC Machine Tools Based On ContouringError Measurement , 2003 .

[3]  Dong Sun,et al.  High-accuracy trajectory tracking of industrial robot manipulator using adaptive-learning scheme , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[4]  J. S. Lee,et al.  An adaptive learning control of uncertain robotic systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  Pierre-Jean Barre,et al.  Control of an Industrial Robot using Acceleration Feedback , 2006, J. Intell. Robotic Syst..

[6]  Tong Heng Lee,et al.  Analysis and comparison of iterative learning control schemes , 2004, Eng. Appl. Artif. Intell..

[7]  George N. Saridis,et al.  Acceleration and torque feedback for robotic control: Experimental results , 1990, J. Field Robotics.

[8]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[9]  B. De Jager,et al.  Acceleration assisted tracking control , 1994, IEEE Control Systems.

[10]  Johannes Heidenhain,et al.  A servo parameter tuning method for high- speed NC machine tools based on contouring error measurement , 2003 .

[11]  Stephen Yurkovich,et al.  Nonlinear control with acceleration feedback for a two-link flexible robot , 1993 .

[12]  M. O. Tokhi,et al.  Hybrid learning control schemes with input shaping of a flexible manipulator system , 2006 .

[13]  Maarten Steinbuch,et al.  Learning-based identification and iterative learning control of direct-drive robots , 2005, IEEE Transactions on Control Systems Technology.

[14]  George N. Saridis,et al.  L-Q design of PID controllers for robot arms , 1985, IEEE J. Robotics Autom..

[15]  G. Saridis,et al.  Robust compensation for a robotic manipulator , 1984 .

[16]  M. Readman,et al.  Acceleration feedback for flexible joint robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[17]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[18]  Kevin L. Moore,et al.  Iterative Learning Control: An Expository Overview , 1999 .

[19]  Antonio Visioli,et al.  An iterative learning control algorithm for contour tracking of unknown objects , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[20]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[21]  Pierre-Jean Barre,et al.  Influence of High-Speed Machine Tool Control Parameters on the Contouring Accuracy. Application to Linear and Circular Interpolation , 2004, J. Intell. Robotic Syst..

[22]  Weiliang Xu,et al.  Joint acceleration feedback control for robots: analysis, sensing and experiments , 2000 .