A Genomic Map of the Effects of Linked Selection in Drosophila

Natural selection at one site shapes patterns of genetic variation at linked sites. Quantifying the effects of “linked selection” on levels of genetic diversity is key to making reliable inference about demography, building a null model in scans for targets of adaptation, and learning about the dynamics of natural selection. Here, we introduce the first method that jointly infers parameters of distinct modes of linked selection, notably background selection and selective sweeps, from genome-wide diversity data, functional annotations and genetic maps. The central idea is to calculate the probability that a neutral site is polymorphic given local annotations, substitution patterns, and recombination rates. Information is then combined across sites and samples using composite likelihood in order to estimate genome-wide parameters of distinct modes of selection. In addition to parameter estimation, this approach yields a map of the expected neutral diversity levels along the genome. To illustrate the utility of our approach, we apply it to genome-wide resequencing data from 125 lines in Drosophila melanogaster and reliably predict diversity levels at the 1Mb scale. Our results corroborate estimates of a high fraction of beneficial substitutions in proteins and untranslated regions (UTR). They allow us to distinguish between the contribution of sweeps and other modes of selection around amino acid substitutions and to uncover evidence for pervasive sweeps in untranslated regions (UTRs). Our inference further suggests a substantial effect of other modes of linked selection and of adaptation in particular. More generally, we demonstrate that linked selection has had a larger effect in reducing diversity levels and increasing their variance in D. melanogaster than previously appreciated.

[1]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[2]  R. Lewontin,et al.  The Genetic Basis of Evolutionary Change , 2022 .

[3]  T. Maruyama,et al.  The age of a rare mutant gene in a large population. , 1974, American journal of human genetics.

[4]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[5]  J. Crow The genetic basis of evolutionary change , 1975 .

[6]  W. Ewens Mathematical Population Genetics , 1980 .

[7]  D C Shields,et al.  "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. , 1988, Molecular biology and evolution.

[8]  N L Kaplan,et al.  The "hitchhiking effect" revisited. , 1989, Genetics.

[9]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[10]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[11]  W. Stephan,et al.  Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. , 1993, Molecular biology and evolution.

[12]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[13]  D. Hartl,et al.  Codon usage bias and base composition of nuclear genes in Drosophila. , 1993, Genetics.

[14]  R. Hudson,et al.  How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Mackay,et al.  The genomic rate of transposable element movement in Drosophila melanogaster. , 1995, Molecular biology and evolution.

[16]  N L Kaplan,et al.  Deleterious background selection with recombination. , 1995, Genetics.

[17]  H. Akashi,et al.  Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. , 1995, Genetics.

[18]  B. Charlesworth Background selection and patterns of genetic diversity in Drosophila melanogaster. , 1996, Genetical research.

[19]  B. Charlesworth,et al.  The effect of recombination on background selection. , 1996, Genetical research.

[20]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[21]  Nicholas H. Barton,et al.  The effect of hitch-hiking on neutral genealogies , 1998 .

[22]  A. Caballero,et al.  Effective size and polymorphism of linked neutral loci in populations under directional selection. , 1998, Genetics.

[23]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[24]  M. Nachman,et al.  Estimate of the mutation rate per nucleotide in humans. , 2000, Genetics.

[25]  P. Andolfatto,et al.  A genome-wide departure from the standard neutral model in natural populations of Drosophila. , 2000, Genetics.

[26]  J. Gillespie Genetic drift in an infinite population. The pseudohitchhiking model. , 2000, Genetics.

[27]  W. Stephan,et al.  Joint effects of genetic hitchhiking and background selection on neutral variation. , 2000, Genetics.

[28]  G. McVean,et al.  The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. , 2000, Genetics.

[29]  R. Hudson Two-locus sampling distributions and their application. , 2001, Genetics.

[30]  Justin C. Fay,et al.  Testing the neutral theory of molecular evolution with genomic data from Drosophila , 2002, Nature.

[31]  Pardis C Sabeti,et al.  Detecting recent positive selection in the human genome from haplotype structure , 2002, Nature.

[32]  B. Charlesworth,et al.  Muller's ratchet and the pattern of variation at a neutral locus. , 2002, Genetics.

[33]  W. Stephan,et al.  Detecting a local signature of genetic hitchhiking along a recombining chromosome. , 2002, Genetics.

[34]  Molly Przeworski,et al.  The signature of positive selection at randomly chosen loci. , 2002, Genetics.

[35]  Adam Eyre-Walker,et al.  Adaptive protein evolution in Drosophila , 2002, Nature.

[36]  M. Nachman,et al.  Gene density and human nucleotide polymorphism. , 2002, Molecular biology and evolution.

[37]  G. Rubin,et al.  A Drosophila full-length cDNA resource , 2002, Genome Biology.

[38]  Wolfgang Stephan,et al.  Selective sweeps in the presence of interference among partially linked loci. , 2003, Genetics.

[39]  B. Payseur,et al.  Selection at linked sites in the partial selfer Caenorhabditis elegans. , 2003, Molecular biology and evolution.

[40]  Alexey S Kondrashov,et al.  Direct estimates of human per nucleotide mutation rates at 20 loci causing mendelian diseases , 2003, Human mutation.

[41]  Paul Fearnhead,et al.  Consistency of estimators of the population-scaled recombination rate. , 2003, Theoretical population biology.

[42]  S. Nuzhdin,et al.  Mutation accumulation and the effect of copia insertions in Drosophila melanogaster. , 2004, Genetical research.

[43]  H. Innan,et al.  Pattern of polymorphism after strong artificial selection in a domestication event. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Nielsen,et al.  Linkage Disequilibrium as a Signature of Selective Sweeps , 2004, Genetics.

[45]  J. Hermisson,et al.  Soft Sweeps , 2005, Genetics.

[46]  Mattias Jakobsson,et al.  The Pattern of Polymorphism in Arabidopsis thaliana , 2005, PLoS biology.

[47]  G. Coop,et al.  THE SIGNATURE OF POSITIVE SELECTION ON STANDING GENETIC VARIATION , 2005, Evolution; international journal of organic evolution.

[48]  Brian Charlesworth,et al.  Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content , 2005, Genome Biology.

[49]  P. Andolfatto Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.

[50]  Carlos Bustamante,et al.  Genomic scans for selective sweeps using SNP data. , 2005, Genome research.

[51]  Kevin R. Thornton,et al.  Approximate Bayesian Inference Reveals Evidence for a Recent, Severe Bottleneck in a Netherlands Population of Drosophila melanogaster , 2006, Genetics.

[52]  C. Wiuf Consistency of estimators of population scaled parameters using composite likelihood , 2006, Journal of mathematical biology.

[53]  W. Stephan,et al.  Inferring the Demographic History and Rate of Adaptive Substitution in Drosophila , 2006, PLoS genetics.

[54]  D. Halligan,et al.  Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. , 2006, Genome research.

[55]  J. Hermisson,et al.  Soft sweeps II--molecular population genetics of adaptation from recurrent mutation or migration. , 2006, Molecular biology and evolution.

[56]  Joachim Hermisson,et al.  Soft Sweeps III: The Signature of Positive Selection from Recurrent Mutation , 2006, PLoS genetics.

[57]  Kosuke M. Teshima,et al.  Directional Positive Selection on an Allele of Arbitrary Dominance , 2006, Genetics.

[58]  J. Pritchard,et al.  A Map of Recent Positive Selection in the Human Genome , 2006, PLoS biology.

[59]  D. Charlesworth,et al.  Testing for Effects of Recombination Rate on Nucleotide Diversity in Natural Populations of Arabidopsis lyrata , 2006, Genetics.

[60]  Alan Robertson,et al.  Inbreeding in artificial selection programmes. , 1961, Genetical research.

[61]  B. Charlesworth,et al.  Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila , 2007, Nature.

[62]  Colin N. Dewey,et al.  Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans , 2007, PLoS biology.

[63]  B. Charlesworth,et al.  Background Selection in Single Genes May Explain Patterns of Codon Bias , 2007, Genetics.

[64]  Peter Andolfatto,et al.  Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. , 2007, Genome research.

[65]  Saverio Vicario,et al.  Codon usage in twelve species of Drosophila , 2007, BMC Evolutionary Biology.

[66]  Sònia Casillas,et al.  Purifying selection maintains highly conserved noncoding sequences in Drosophila. , 2007, Molecular biology and evolution.

[67]  M. Hubisz,et al.  Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila. , 2006, Molecular biology and evolution.

[68]  D. Petrov,et al.  Genomewide Spatial Correspondence Between Nonsynonymous Divergence and Neutral Polymorphism Reveals Extensive Adaptation in Drosophila , 2007, Genetics.

[69]  P. Andolfatto,et al.  The Impact of Natural Selection on the Genome: Emerging Patterns in Drosophila and Arabidopsis , 2008 .

[70]  F. Hospital,et al.  Selective Sweep at a Quantitative Trait Locus in the Presence of Background Genetic Variation , 2008, Genetics.

[71]  P. Andolfatto,et al.  Positive and negative selection on noncoding DNA in Drosophila simulans. , 2008, Molecular biology and evolution.

[72]  Joseph K. Pickrell,et al.  The Role of Geography in Human Adaptation , 2009, PLoS genetics.

[73]  Guy Sella,et al.  Pervasive Hitchhiking at Coding and Regulatory Sites in Humans , 2009, PLoS genetics.

[74]  B. Charlesworth,et al.  Studying Patterns of Recent Evolution at Synonymous Sites and Intronic Sites in Drosophila melanogaster , 2009, Journal of Molecular Evolution.

[75]  V. Hartenstein,et al.  Drosophila melanogaster , 2005 .

[76]  P. Green,et al.  Widespread Genomic Signatures of Natural Selection in Hominid Evolution , 2009, PLoS genetics.

[77]  D. Petrov,et al.  Pervasive Natural Selection in the Drosophila Genome? , 2009, PLoS genetics.

[78]  Marian Thomson,et al.  Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. , 2009, Genome research.

[79]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[80]  H. P. de Vladar,et al.  The statistical mechanics of a polygenic character under stabilizing selection, mutation and drift , 2010, Journal of The Royal Society Interface.

[81]  Peter L. Ralph,et al.  Parallel Adaptation: One or Many Waves of Advance of an Advantageous Allele? , 2010, Genetics.

[82]  W. Stephan Genetic hitchhiking versus background selection: the controversy and its implications , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  Joseph K. Pickrell,et al.  The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation , 2010, Current Biology.

[84]  J. Parsch,et al.  On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila. , 2010, Molecular biology and evolution.

[85]  P. Shannon,et al.  Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing , 2010, Science.

[86]  Ryan D. Hernandez,et al.  Classic Selective Sweeps Were Rare in Recent Human Evolution , 2011, Science.

[87]  Bryan D. Kolaczkowski,et al.  Genomic Differentiation Between Temperate and Tropical Australian Populations of Drosophila melanogaster , 2011, Genetics.

[88]  P. Andolfatto,et al.  Effective Population Size and the Efficacy of Selection on the X Chromosomes of Two Closely Related Drosophila Species , 2010, Genome biology and evolution.

[89]  J. Hermisson,et al.  Selective sweeps for recessive alleles and for other modes of dominance , 2010, Journal of mathematical biology.

[90]  Daniel J. Wilson,et al.  A Population Genetics-Phylogenetics Approach to Inferring Natural Selection in Coding Sequences , 2011, PLoS genetics.

[91]  Boris I. Shraiman,et al.  Correlated Evolution of Nearby Residues in Drosophilid Proteins , 2011, PLoS genetics.

[92]  R. Durbin,et al.  Inference of human population history from individual whole-genome sequences. , 2011, Nature.

[93]  Y. Rinott,et al.  Pervasive Adaptive Protein Evolution Apparent in Diversity Patterns around Amino Acid Substitutions in Drosophila simulans , 2011, PLoS genetics.

[94]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[95]  Peter L. Ralph,et al.  Patterns of Neutral Diversity Under General Models of Selective Sweeps , 2011, Genetics.

[96]  Daniel B. Weissman,et al.  Limits to the Rate of Adaptive Substitution in Sexual Populations , 2012, PLoS genetics.

[97]  B. Charlesworth The Role of Background Selection in Shaping Patterns of Molecular Evolution and Variation: Evidence from Variability on the Drosophila X Chromosome , 2012, Genetics.

[98]  P. Andolfatto,et al.  Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? , 2012, PLoS biology.

[99]  J. M. Comeron,et al.  The Many Landscapes of Recombination in Drosophila melanogaster , 2012, PLoS genetics.

[100]  Kevin R. Thornton,et al.  The Drosophila melanogaster Genetic Reference Panel , 2012, Nature.

[101]  Andrew H. Chan,et al.  Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster , 2012, PLoS genetics.

[102]  C. Vogl,et al.  Unconstrained evolution in short introns? – An analysis of genome‐wide polymorphism and divergence data from Drosophila , 2012, Journal of evolutionary biology.

[103]  E. Stone,et al.  Joint genotyping on the fly: Identifying variation among a sequenced panel of inbred lines , 2012, Genome research.

[104]  R. Nielsen,et al.  Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation , 2012, PLoS genetics.

[105]  W. Stephan,et al.  Demographic Inference Reveals African and European Admixture in the North American Drosophila melanogaster Population , 2013, Genetics.

[106]  B. Payseur,et al.  Genomic signatures of selection at linked sites: unifying the disparity among species , 2013, Nature Reviews Genetics.

[107]  Philipp W. Messer,et al.  Recent selective sweeps in Drosophila were abundant and primarily soft , 2013 .

[108]  Phil Green,et al.  Comment on “Evidence of Abundant Purifying Selection in Humans for Recently Acquired Regulatory Functions” , 2013, Science.

[109]  Kevin R. Thornton,et al.  Abundance and Distribution of Transposable Elements in Two Drosophila QTL Mapping Resources , 2013, Molecular biology and evolution.

[110]  Kevin R. Thornton,et al.  A second-generation assembly of the Drosophila simulans genome provides new insights into patterns of lineage-specific divergence , 2013, Genome research.

[111]  K. Lehmann,et al.  Whole‐genome sequencing of two North American Drosophila melanogaster populations reveals genetic differentiation and positive selection , 2013, Molecular ecology.

[112]  B. Charlesworth Background selection 20 years on: the Wilhelmine E. Key 2012 invitational lecture. , 2013, The Journal of heredity.

[113]  Laura Ponting,et al.  FlyBase 102—advanced approaches to interrogating FlyBase , 2013, Nucleic Acids Res..

[114]  Benjamin H. Good,et al.  Genetic Diversity in the Interference Selection Limit , 2014, PLoS genetics.

[115]  H. P. de Vladar,et al.  Stability and Response of Polygenic Traits to Stabilizing Selection and Mutation , 2014, Genetics.

[116]  M. Blanchette,et al.  Evidence for Widespread Positive and Negative Selection in Coding and Conserved Noncoding Regions of Capsella grandiflora , 2014, bioRxiv.

[117]  Josep M. Comeron,et al.  Background Selection as Baseline for Nucleotide Variation across the Drosophila Genome , 2014, bioRxiv.

[118]  D. Begun,et al.  Differential strengths of positive selection revealed by hitchhiking effects at small physical scales in Drosophila melanogaster. , 2014, Molecular biology and evolution.

[119]  G. Coop,et al.  A Population Genetic Signal of Polygenic Adaptation , 2013, PLoS genetics.

[120]  Timothy B Sackton,et al.  Natural Selection Constrains Neutral Diversity across A Wide Range of Species , 2014, bioRxiv.

[121]  G. Coop,et al.  A Coalescent Model for a Sweep of a Unique Standing Variant , 2015, Genetics.

[122]  Philipp W. Messer,et al.  Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps , 2013, PLoS genetics.

[123]  Erik Kaestner,et al.  The Origins Of Genome Architecture , 2016 .