A structure-preserving method for generalized algebraic Riccati equations based on pencil arithmetic

This paper describes a numerical method for extracting the stable right deflating subspace of a matrix pencil Z − λY using a spectral projection method. It has several advantages compared to other spectral projection methods like the sign function method. In particular it avoids the rounding error induced loss of accuracy associated with matrix inversions. The new algorithm is particularly well adapted to solving continuous time algebraic Riccati equations. In numerical examples, it solves Riccati equations to high accuracy.

[1]  Ian R. Petersen,et al.  Robust Control Design Using H-infinity Methods , 2000 .

[2]  Judith Gardiner,et al.  A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[3]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[4]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[5]  Balas,et al.  [ z-analysis and Synthesis Toolbox * ( p-tools ) t , 2002 .

[6]  R. Byers,et al.  Disk functions and their relationship to the matrix sign function , 1997, 1997 European Control Conference (ECC).

[7]  Uwe Mackenroth,et al.  H 2 Optimal Control , 2004 .

[8]  J. Demmel,et al.  Using the Matrix Sign Function to Compute Invariant Subspaces , 1998, SIAM J. Matrix Anal. Appl..

[9]  Peter Benner,et al.  CAREX - A Collection of Benchmark Examples for Continuous-Time Algebraic Riccati Equations (Version , 1999 .

[10]  Volker Mehrmann,et al.  Dampening controllers via a Riccati equation approach , 1998, IEEE Trans. Autom. Control..

[11]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[12]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[13]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[14]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[15]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[16]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[17]  Alan J. Laub,et al.  On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.

[18]  R. Byers Numerical Stability and Instability in Matrix Sign Function Based Algorithms , 1986 .

[19]  A. Malyshev Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .

[20]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[22]  J. Demmel,et al.  An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .

[23]  Siep Weiland,et al.  H2 Optimal Control , 2000 .

[24]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[25]  L. Balzer Accelerated convergence of the matrix sign function method of solving Lyapunov, Riccati and other matrix equations , 1980 .

[26]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[27]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[28]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[29]  I. Rosen,et al.  A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations , 1995 .