Noisy distributed sensing in the Bayesian regime
暂无分享,去创建一个
S. Wolk | P. Sekatski | W. Dur | W. Dür | P. Sekatski | S. Wölk | Wolfgang Dür | Sabine Wölk
[1] A. Smerzi,et al. Phase-noise protection in quantum-enhanced differential interferometry , 2014, 1409.1703.
[2] Sabine Wolk,et al. Estimation of gradients in quantum metrology , 2017, 1703.09123.
[3] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[4] Zachary Eldredge,et al. Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks. , 2019, Physical review. A.
[5] W Dür,et al. Improved Sensing with a Single Qubit. , 2017, Physical review letters.
[6] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[7] Pavel Sekatski,et al. Quantum metrology with full and fast quantum control , 2016, 1603.08944.
[8] Jesús Rubio,et al. Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.
[9] Changhyoup Lee,et al. Optimal distributed quantum sensing using Gaussian states , 2020 .
[10] Jieping Ye,et al. A quantum network of clocks , 2013, Nature Physics.
[11] T. Mehlstaubler,et al. Probing Time Dilation in Coulomb Crystals in a High-Precision Ion Trap , 2017, Physical Review Applied.
[12] J. Czajkowski,et al. Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.
[13] M. Lukin,et al. Quantum error correction for metrology. , 2013, Physical review letters.
[14] H. J. Kimble,et al. The quantum internet , 2008, Nature.
[15] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[16] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[17] Zachary Eldredge,et al. Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.
[18] B. Kraus,et al. Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.
[19] A Retzker,et al. Increasing sensing resolution with error correction. , 2013, Physical review letters.
[20] J. Preskill,et al. Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.
[21] Morgan W. Mitchell,et al. Macroscopic singlet states for gradient magnetometry , 2013 .
[22] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[23] Pavel Sekatski,et al. Optimal distributed sensing in noisy environments , 2019, Physical Review Research.
[24] M. Lukin,et al. Optical Interferometry with Quantum Networks. , 2018, Physical review letters.
[25] Sabine Wolk,et al. Optimized parameter estimation in the presence of collective phase noise , 2016 .
[26] Daniel Nigg,et al. A quantum information processor with trapped ions , 2013, 1308.3096.
[27] Michael J. W. Hall,et al. Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.
[28] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[29] Augusto Smerzi,et al. Quantum-enhanced multiparameter estimation in multiarm interferometers , 2015, Scientific Reports.
[30] S. Wehner,et al. Quantum internet: A vision for the road ahead , 2018, Science.
[31] L. Pezzè,et al. Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.
[32] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[33] Giulio Chiribella,et al. Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.
[34] J. Borregaard,et al. Quantum-assisted telescope arrays , 2018, Physical Review A.
[35] Zachary Eldredge,et al. Optimal and secure measurement protocols for quantum sensor networks. , 2016, Physical review. A.
[36] Philipp Hyllus,et al. Precision bounds for gradient magnetometry with atomic ensembles , 2017, 1703.09056.
[37] Paul A Knott,et al. Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.
[38] Hiroshi Imai,et al. A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .
[39] P. Sekatski,et al. Dynamical decoupling leads to improved scaling in noisy quantum metrology , 2015, 1512.07476.
[40] Rafal Demkowicz-Dobrzanski,et al. Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.
[41] Howard M. Wiseman,et al. π-Corrected Heisenberg Limit. , 2019, Physical review letters.
[42] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[43] R. Blatt,et al. Entangled states of trapped atomic ions , 2008, Nature.
[44] L. Davidovich,et al. Quantum metrological limits via a variational approach. , 2012, Physical review letters.
[45] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[46] Nathan Wiebe,et al. Robust online Hamiltonian learning , 2012, TQC.
[47] M. Lukin,et al. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms. , 2016, Physical review letters.
[48] Pieter Kok,et al. Geometric perspective on quantum parameter estimation , 2019, AVS Quantum Science.
[49] Martin Fraas,et al. Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.
[50] R. Hanson,et al. Diamond NV centers for quantum computing and quantum networks , 2013 .