Noisy distributed sensing in the Bayesian regime

We consider non-local sensing of scalar signals with specific spatial dependence in the Bayesian regime. We design schemes that allow one to achieve optimal scaling and are immune to noise sources with a different spatial dependence than the signal. This is achieved by using a sensor array of spatially separated sensors and constructing a multi-dimensional decoherence free subspace. While in the Fisher regime with sharp prior and multiple measurements only the spectral range $\Delta$ is important, in single-shot sensing with broad prior the number of available energy levels $L$ is crucial. We study the influence of $L$ and $\Delta$ also in intermediate scenarios, and show that these quantities can be optimized separately in our setting. This provides us with a flexible scheme that can be adapted to different situations, and is by construction insensitive to given noise sources.

[1]  A. Smerzi,et al.  Phase-noise protection in quantum-enhanced differential interferometry , 2014, 1409.1703.

[2]  Sabine Wolk,et al.  Estimation of gradients in quantum metrology , 2017, 1703.09123.

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Zachary Eldredge,et al.  Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks. , 2019, Physical review. A.

[5]  W Dür,et al.  Improved Sensing with a Single Qubit. , 2017, Physical review letters.

[6]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[7]  Pavel Sekatski,et al.  Quantum metrology with full and fast quantum control , 2016, 1603.08944.

[8]  Jesús Rubio,et al.  Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.

[9]  Changhyoup Lee,et al.  Optimal distributed quantum sensing using Gaussian states , 2020 .

[10]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[11]  T. Mehlstaubler,et al.  Probing Time Dilation in Coulomb Crystals in a High-Precision Ion Trap , 2017, Physical Review Applied.

[12]  J. Czajkowski,et al.  Adaptive quantum metrology under general Markovian noise , 2017, 1704.06280.

[13]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[14]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[15]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[16]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[17]  Zachary Eldredge,et al.  Distributed Quantum Metrology with Linear Networks and Separable Inputs. , 2018, Physical review letters.

[18]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[19]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[20]  J. Preskill,et al.  Achieving the Heisenberg limit in quantum metrology using quantum error correction , 2017, Nature Communications.

[21]  Morgan W. Mitchell,et al.  Macroscopic singlet states for gradient magnetometry , 2013 .

[22]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[23]  Pavel Sekatski,et al.  Optimal distributed sensing in noisy environments , 2019, Physical Review Research.

[24]  M. Lukin,et al.  Optical Interferometry with Quantum Networks. , 2018, Physical review letters.

[25]  Sabine Wolk,et al.  Optimized parameter estimation in the presence of collective phase noise , 2016 .

[26]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[27]  Michael J. W. Hall,et al.  Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.

[28]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[29]  Augusto Smerzi,et al.  Quantum-enhanced multiparameter estimation in multiarm interferometers , 2015, Scientific Reports.

[30]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[31]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[32]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[33]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[34]  J. Borregaard,et al.  Quantum-assisted telescope arrays , 2018, Physical Review A.

[35]  Zachary Eldredge,et al.  Optimal and secure measurement protocols for quantum sensor networks. , 2016, Physical review. A.

[36]  Philipp Hyllus,et al.  Precision bounds for gradient magnetometry with atomic ensembles , 2017, 1703.09056.

[37]  Paul A Knott,et al.  Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.

[38]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[39]  P. Sekatski,et al.  Dynamical decoupling leads to improved scaling in noisy quantum metrology , 2015, 1512.07476.

[40]  Rafal Demkowicz-Dobrzanski,et al.  Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.

[41]  Howard M. Wiseman,et al.  π-Corrected Heisenberg Limit. , 2019, Physical review letters.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[44]  L. Davidovich,et al.  Quantum metrological limits via a variational approach. , 2012, Physical review letters.

[45]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[46]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[47]  M. Lukin,et al.  Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms. , 2016, Physical review letters.

[48]  Pieter Kok,et al.  Geometric perspective on quantum parameter estimation , 2019, AVS Quantum Science.

[49]  Martin Fraas,et al.  Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.

[50]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .