Feasibility and Mass-Benefit Analysis of Aerocapture for Missions to Venus

A numerical assessment of the feasibility of aerocapture at Venus is presented, and the mass benefit of aerocapture is compared with propulsive orbit insertion. This paper considers constraints imp...

[1]  Kazuhisa Fujita,et al.  Preliminary Study of Venus Exploration with Aerocapture System , 2008 .

[2]  Robert D. Braun,et al.  Drag-Modulation Flight-Control System Options for Planetary Aerocapture , 2014 .

[3]  Peter J. Edelman,et al.  Design and Optimization of Interplanetary Aerogravity-Assist Tours , 2014 .

[4]  M. I. Cruz,et al.  The aerocapture vehicle mission design concept. [aerodynamically controlled capture of payload into Mars orbit] , 1979 .

[5]  Mauro Pontani,et al.  Post-aerocapture orbit selection and maintenance for the Aerofast mission to Mars , 2012 .

[6]  V. Moroz,et al.  Structure of the Venusian atmosphere from surface up to 100 km , 2006 .

[7]  Richard P. Kornfeld,et al.  The NASA/CNES Mars sample return— a status report , 2004 .

[8]  James Evans Lyne,et al.  Parametric Study of Aerocapture for Missions to Venus , 2005 .

[9]  W. A. Page,et al.  Radiative and convective heating during Venus entry. , 1972 .

[10]  Elizabeth A. Kolawa,et al.  Technology Perspectives in the Future Exploration of Venus , 2013 .

[11]  C. G. Justus,et al.  Global Reference Atmospheric Model (GRAM) Series for Aeroassist Applications , 2005 .

[13]  S. Saikia,et al.  Feasibility Assessment of Aerocapture for Future Titan Orbiter Missions , 2018, Journal of Spacecraft and Rockets.

[14]  Robert W. Bailey,et al.  Cost-Benefit Analysis of the Aerocapture Mission Set , 2005 .

[15]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[16]  Atmospheric Models for Aerocapture , 2004 .

[17]  N. Vinh,et al.  Hypersonic and Planetary Entry Flight Mechanics , 1980 .

[18]  J. Lissauer,et al.  Planetary Sciences: List of Tables , 2010 .

[19]  W Powell Richard,et al.  Numerical Roll Reversal Predictor-Corrector Aerocapture and Precision Landing Guidance Algorithms for the Mars Surveyor Program 2001 Missions , 1998 .

[20]  Andrew S. Keys,et al.  Overview of a Proposed Flight Validation of Aerocapture System Technology , 2006 .

[21]  Roman Y Jits,et al.  Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture. , 2004, Acta astronautica.

[22]  Paulo Gil,et al.  A novel orbiter mission concept for venus with the EnVision proposal , 2017 .

[23]  E. M. Repic,et al.  Aerobraking as a potential planetary capture mode. , 1968 .

[24]  R. Braun,et al.  Analytical Assessment of Drag-Modulation Trajectory Control for Planetary Entry , 2018, The Journal of the Astronautical Sciences.

[25]  S. Fulton,et al.  Oceanus: A multi-spacecraft flagship mission concept to explore Saturn and Uranus , 2017 .

[26]  James M. Longuski,et al.  Automated design of gravity-assist trajectories to Mars and the outer planets , 1991 .

[27]  G. Menees Trajectory analysis of radiative heating for planetary missions with aerobraking of spacecraft , 1985 .

[28]  Ethiraj Venkatapathy,et al.  Computational Aerothermodynamic Design Issues for Hypersonic Vehicles , 1997 .