Sparse difference resultant

In this paper, the concept of sparse difference resultant for a Laurent transformally essential system of Laurent difference polynomials is introduced and its properties are proved. In particular, order and degree bounds for the sparse difference resultant are given. Based on these bounds, an algorithm to compute the sparse difference resultant is proposed, which is single exponential in terms of the number of variables, the Jacobi number, and the size of the system. Also, the precise order, degree, a determinant representation, and a Poissontype product formula for the difference resultant are given.

[1]  R. Cohn EXTENSIONS OF DIFFERENCE FIELDS. , 1952 .

[2]  Richard M. Cohn Manifolds of difference polynomials , 1948 .

[3]  R. Cohn Order and dimension , 1983 .

[4]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[5]  Wolfgang Vogel,et al.  Lectures on Results on Bezout’s Theorem , 1984 .

[6]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[7]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[8]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[9]  J. Rafael Sendra,et al.  Linear complete differential resultants and the implicitization of linear DPPEs , 2010, J. Symb. Comput..

[10]  J. Jouanolou,et al.  Le formalisme du résultant , 1991 .

[11]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[12]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[13]  Xiao-Shan Gao,et al.  Sparse differential resultant for laurent differential polynomials , 2013, ACCA.

[14]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[15]  B. Lando Jacobi’s bound for the order of systems of first order differential equations , 1970 .

[16]  Xiao-Shan Gao,et al.  Differential Chow Form for Projective Differential Variety , 2011, ArXiv.

[17]  David Eisenbud,et al.  Resultants and Chow forms via exterior syzygies , 2001, math/0111040.

[18]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[19]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[20]  Xiao-Shan Gao,et al.  Matrix Formulae of Differential Resultant for First Order Generic Ordinary Differential Polynomials , 2012, ASCM.

[21]  Xiao-Shan Gao,et al.  Sparse difference resultant , 2013, ISSAC '13.

[22]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[23]  Xiao-Shan Gao,et al.  Intersection theory in differential algebraic geometry: Generic intersections and the differential Chow form , 2010, Transactions of the American Mathematical Society.

[24]  W. V. Hodge,et al.  Methods of algebraic geometry , 1947 .

[25]  Ioannis Z. Emiris,et al.  On the Complexity of Sparse Elimination , 1996, J. Complex..

[26]  Bernd Sturmfels,et al.  Chow polytopes and general resultants , 1992 .

[27]  J. Canny,et al.  Efficient Incremental Algorithms for the , 1994 .

[28]  Li-Yong Shen,et al.  Proper reparametrization for inherently improper unirational varieties , 2011, J. Syst. Sci. Complex..

[29]  Victor Y. Pan,et al.  Improved algorithms for computing determinants and resultants , 2005, J. Complex..

[30]  Yong Luo,et al.  A characteristic set method for ordinary difference polynomial systems , 2009, J. Symb. Comput..

[31]  E. Hrushovski The Elementary Theory of the Frobenius Automorphisms , 2004, math/0406514.

[32]  Hamid Maarouf,et al.  Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal , 2001, J. Symb. Comput..

[33]  Sonia L. Rueda Linear sparse differential resultant formulas , 2011 .

[34]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[35]  Xiao-Shan Gao,et al.  Sparse differential resultant , 2011, ISSAC '11.

[36]  John F. Canny,et al.  Generalized Characteristic Polynomials , 1988, ISSAC.