An empirical study on the effects of translucency on photometric stereo

We present an empirical study on the effects of translucency on photometric stereo. Our study shows that the impact on the accuracy of the photometric normals is related to the relative size of the geometrical features and the mean free path. We show that under simplified conditions, the obtained photometric normals are a blurred version of the true surface normals, where the blur kernel is directly related to the subsurface scattering profile. We furthermore investigate the impact of scattering albedo, index of refraction, and single scattering on the accuracy. We perform our analysis using simulations, and demonstrate the validity on a real world example.

[1]  Yasushi Yagi,et al.  Shape from Single Scattering for Translucent Objects , 2012, ECCV.

[2]  Ira Kemelmacher-Shlizerman,et al.  Photometric Stereo with General, Unknown Lighting , 2006, International Journal of Computer Vision.

[3]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[4]  Maria Petrou,et al.  The 4-Source Photometric Stereo Technique for Three-Dimensional Surfaces in the Presence of Highlights and Shadows , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jason Lawrence,et al.  An analysis of using high-frequency sinusoidal illumination to measure the 3D shape of translucent objects , 2011, CVPR 2011.

[6]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[7]  M. Levoy,et al.  An assessment of laser range measurement on marble surfaces , 2001 .

[8]  H. Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[9]  Pieter Peers,et al.  Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination , 2007 .

[10]  Mark Ollila,et al.  Eurographics Symposium on Rendering , 2004 .

[11]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[12]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[13]  David J. Kriegman,et al.  Toward Reconstructing Surfaces With Arbitrary Isotropic Reflectance : A Stratified Photometric Stereo Approach , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Henrik Wann Jensen,et al.  Light diffusion in multi-layered translucent materials , 2005, ACM Trans. Graph..

[15]  Takeo Kanade,et al.  Determining shape and reflectance of Lambertian, specular, and hybrid surfaces using extended sources , 1989, International Workshop on Industrial Applications of Machine Intelligence and Vision,.

[16]  Shree K. Nayar,et al.  An empirical BSSRDF model , 2009, ACM Trans. Graph..

[17]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[18]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[20]  Todd E. Zickler,et al.  A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance , 2010, ACM Trans. Graph..

[21]  Pat Hanrahan,et al.  Reflection from layered surfaces due to subsurface scattering , 1993, SIGGRAPH.

[22]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[23]  Szymon Rusinkiewicz,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, ACM Trans. Graph..

[24]  Paul Debevec,et al.  13th Eurographics Workshop on Rendering , 2002 .