Concatenated tensor network states

We introduce the concept of concatenated tensor networks to efficiently describe quantum states. We show that the corresponding concatenated tensor network states can efficiently describe time evolution and possess arbitrary block-wise entanglement and long-ranged correlations. We illustrate the approach for the enhancement of matrix product states, i.e. one-dimensional (1D) tensor networks, where we replace each of the matrices of the original matrix product state with another 1D tensor network. This procedure yields a 2D tensor network, which includes—already for tensor dimension 2—all states that can be prepared by circuits of polynomially many (possibly non-unitary) two-qubit quantum operations, as well as states resulting from time evolution with respect to Hamiltonians with short-ranged interactions. We investigate the possibility of efficiently extracting information from these states, which serves as the basic step in a variational optimization procedure. To this aim, we utilize the known exact and approximate methods for 2D tensor networks and demonstrate some improvements thereof, which are also applicable e.g. in the context of 2D projected entangled pair states. We generalize the approach to higher dimensional and tree tensor networks.

[1]  M B Plenio,et al.  Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension. , 2006, Physical review letters.

[2]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[3]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[4]  J. I. Cirac,et al.  Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states , 2007 .

[5]  F. Verstraete,et al.  Matrix product operator representations , 2008, 0804.3976.

[6]  W. Dur,et al.  Renormalization algorithm with graph enhancement , 2008, 0802.1211.

[7]  D. DiVincenzo,et al.  Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.

[8]  A. Gendiar,et al.  Stable Optimization of a Tensor Product Variational State , 2003, cond-mat/0303376.

[9]  Self-consistent tensor product variational approximation for 3D classical models , 2000 .

[10]  Michael M. Wolf,et al.  On entropy growth and the hardness of simulating time evolution , 2008, 0801.2078.

[11]  H. Briegel,et al.  Fundamentals of universality in one-way quantum computation , 2007, quant-ph/0702116.

[12]  Michael M. Wolf,et al.  Sequentially generated states for the study of two-dimensional systems , 2008, 0802.2472.

[13]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[14]  S. Rommer,et al.  CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .

[15]  H. Briegel,et al.  A variational method based on weighted graph states , 2007, 0706.0423.

[16]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[17]  M. Plenio,et al.  Random circuits by measurements on weighted graph states , 2008, 0806.3058.

[18]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[19]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[20]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[21]  Yasuhiro Hieida,et al.  Two-Dimensional Tensor Product Variational Formulation , 2001 .

[22]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[23]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[24]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[25]  H. Briegel,et al.  Quantum algorithms for spin models and simulable gate sets for quantum computation , 2008, 0805.1214.

[26]  M B Plenio,et al.  Generic entanglement can be generated efficiently. , 2007, Physical review letters.

[27]  G. Vidal,et al.  Simulation of time evolution with multiscale entanglement renormalization ansatz , 2008 .

[28]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[29]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[30]  Norbert Schuch,et al.  Computational difficulty of finding matrix product ground states. , 2008, Physical review letters.

[31]  N Maeshima,et al.  Vertical density matrix algorithm: a higher-dimensional numerical renormalization scheme based on the tensor product state ansatz. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[33]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[34]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[35]  A. T. Sornborger,et al.  Higher-order methods for simulations on quantum computers , 1999 .

[36]  J I Cirac,et al.  Matrix product states for dynamical simulation of infinite chains. , 2009, Physical review letters.

[37]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[38]  Marko Znidaric,et al.  Exact convergence times for generation of random bipartite entanglement , 2008, 0809.0554.

[39]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[40]  Wolfgang Dür,et al.  Universal resources for measurement-based quantum computation. , 2006, Physical review letters.

[41]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[42]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[43]  Norbert Schuch,et al.  Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2008, Physical review letters.

[44]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[45]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[46]  M. B. Hastings Entropy and entanglement in quantum ground states , 2007 .

[47]  F. Verstraete,et al.  Computational complexity of projected entangled pair states. , 2007, Physical review letters.

[48]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[49]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[50]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[51]  G. Vidal,et al.  Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2004 .

[52]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[53]  J. Ignacio Cirac,et al.  Simulation of quantum dynamics with quantum optical systems , 2003, Quantum Inf. Comput..

[54]  A W Sandvik,et al.  Variational quantum Monte Carlo simulations with tensor-network states. , 2007, Physical review letters.

[55]  J. Ignacio Cirac,et al.  Equivalence classes of non-local unitary operations , 2002, Quantum Inf. Comput..

[56]  S. Bravyi Contraction of matchgate tensor networks on non-planar graphs , 2008, 0801.2989.