Some applications of quasi-velocities in optimal control

In this paper we study optimal control problems for nonholonomic systems defined on Lie algebroids by using quasi-velocities. We consider both kinematic, i.e. systems whose cost functional depends only on position and velocities, and dynamic optimal control problems, i.e. systems whose cost functional depends also on accelerations. The formulation of the problem directly at the level of Lie algebroids turns out to be the correct framework to explain in detail similar results appeared recently [20]. We also provide several examples to illustrate our construction.

[1]  Eduardo Martínez,et al.  Reduction in optimal control theory , 2004 .

[2]  J. Cariñena,et al.  Lie Algebroid generalization of geometric mechanics , 2001 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Jerrold E. Marsden,et al.  Quasivelocities and symmetries in non-holonomic systems , 2009 .

[5]  S. Shankar Sastry,et al.  The Structure of Optimal Controls for a Steering Problem , 1992 .

[6]  Anthony M. Bloch,et al.  The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints , 2011 .

[7]  D. Martín de Diego,et al.  Singular Lagrangian systems and variational constrained mechanics on Lie algebroids , 2007, 0706.2789.

[8]  Thomas R. Kane,et al.  THEORY AND APPLICATIONS , 1984 .

[9]  Ye-Hwa Chen,et al.  Equations of motion of mechanical systems under servo constraints: The Maggi approach , 2008 .

[10]  Eduardo Mart ´ inez REDUCTION IN OPTIMAL CONTROL THEORY , 2004 .

[11]  Anthony M. Bloch,et al.  The Boltzmann-Hamel equations for optimal control , 2007, 2007 46th IEEE Conference on Decision and Control.

[12]  J. Cariñena,et al.  Reduction of Lagrangian mechanics on Lie algebroids , 2007 .

[13]  Thomas R. Kane,et al.  Formulation of dynamical equations of motion , 1983 .

[14]  Firdaus E. Udwadia,et al.  Analytical dynamics with constraint forces that do work in virtual displacements , 2001, Appl. Math. Comput..

[15]  Janusz Grabowski,et al.  Pontryagin Maximum Principle - a generalization , 2009 .

[16]  J. Cortes,et al.  Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.

[17]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[18]  J. Papastavridis On the Transformation Properties of the Nonlinear Hamel Equations , 1995 .

[19]  Eduardo Martínez Lagrangian Mechanics on Lie Algebroids , 2001 .

[20]  J. Cariñena,et al.  Quasi-coordinates from the point of view of Lie algebroid structures , 2007 .

[21]  Jorge Cortes,et al.  A SURVEY OF LAGRANGIAN MECHANICS AND CONTROL ON LIE ALGEBROIDS AND GROUPOIDS , 2005 .

[22]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[23]  Eduardo Martínez,et al.  Mechanical control systems on Lie algebroids , 2004, IMA J. Math. Control. Inf..

[24]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .