暂无分享,去创建一个
M. Camarinha | J. Clemente-Gallardo | E. Martínez | P. Santos | Lígia Abrunheiro | J. F. Cariñena | L. Abrunheiro | J. Cariñena | J. Clemente-Gallardo | E. Martínez | P. Santos | Margarida Camarinha
[1] Eduardo Martínez,et al. Reduction in optimal control theory , 2004 .
[2] J. Cariñena,et al. Lie Algebroid generalization of geometric mechanics , 2001 .
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] Jerrold E. Marsden,et al. Quasivelocities and symmetries in non-holonomic systems , 2009 .
[5] S. Shankar Sastry,et al. The Structure of Optimal Controls for a Steering Problem , 1992 .
[6] Anthony M. Bloch,et al. The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints , 2011 .
[7] D. Martín de Diego,et al. Singular Lagrangian systems and variational constrained mechanics on Lie algebroids , 2007, 0706.2789.
[8] Thomas R. Kane,et al. THEORY AND APPLICATIONS , 1984 .
[9] Ye-Hwa Chen,et al. Equations of motion of mechanical systems under servo constraints: The Maggi approach , 2008 .
[10] Eduardo Mart ´ inez. REDUCTION IN OPTIMAL CONTROL THEORY , 2004 .
[11] Anthony M. Bloch,et al. The Boltzmann-Hamel equations for optimal control , 2007, 2007 46th IEEE Conference on Decision and Control.
[12] J. Cariñena,et al. Reduction of Lagrangian mechanics on Lie algebroids , 2007 .
[13] Thomas R. Kane,et al. Formulation of dynamical equations of motion , 1983 .
[14] Firdaus E. Udwadia,et al. Analytical dynamics with constraint forces that do work in virtual displacements , 2001, Appl. Math. Comput..
[15] Janusz Grabowski,et al. Pontryagin Maximum Principle - a generalization , 2009 .
[16] J. Cortes,et al. Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.
[17] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[18] J. Papastavridis. On the Transformation Properties of the Nonlinear Hamel Equations , 1995 .
[19] Eduardo Martínez. Lagrangian Mechanics on Lie Algebroids , 2001 .
[20] J. Cariñena,et al. Quasi-coordinates from the point of view of Lie algebroid structures , 2007 .
[21] Jorge Cortes,et al. A SURVEY OF LAGRANGIAN MECHANICS AND CONTROL ON LIE ALGEBROIDS AND GROUPOIDS , 2005 .
[22] P. Crouch,et al. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .
[23] Eduardo Martínez,et al. Mechanical control systems on Lie algebroids , 2004, IMA J. Math. Control. Inf..
[24] J. Koiller. Reduction of some classical non-holonomic systems with symmetry , 1992 .