Sandwich-Structured In2S3/In2O3/In2S3 Hollow Nanofibers as Sensing Materials for Ethanol Detection

[1]  Yifan Qiao,et al.  Side-by-side design of bi-component heterojunction nanofibers for high-performance gas sensors: Improvement in synergistic effect , 2022, Applied Surface Science.

[2]  Yan Zhang,et al.  Construction of hierarchical In2O3/In2S3 microsphere heterostructures for TEA detection , 2022, Journal of Materiomics.

[3]  Bingxing Wang,et al.  Interface enhancement effect of hierarchical In2S3/In2O3 nanoflower heterostructures on NO2 gas sensitivity , 2022, Applied Surface Science.

[4]  Hyeunseok Choi,et al.  Synergistic approach to simultaneously improve response and humidity-independence of metal-oxide gas sensors. , 2021, Journal of hazardous materials.

[5]  X. An,et al.  Gas-sensing performance of In2O3@MoO3 hollow core-shell nanospheres prepared by a two-step hydrothermal method , 2021, Sensors and Actuators B: Chemical.

[6]  A. Labidi,et al.  A real-time sharp selectivity with In2S3 gas sensor using a nonlinear dynamic response for VOCs , 2021 .

[7]  N. Myung,et al.  1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review , 2021, Advanced Electronic Materials.

[8]  Xinzhen Wang,et al.  Core-double shell ZnO@In2O3@ZnO hollow microspheres for superior ethanol gas sensing , 2021 .

[9]  Z. Öztürk,et al.  The effect of Ag loading on gas sensor properties of TiO2 nanorods , 2021 .

[10]  S. Liu,et al.  Inner Strain Regulation in Perovskite Single Crystals through Fine-Tuned Halide Composition , 2021 .

[11]  Wenwen Zhan,et al.  Hollow Dodecahedral Structure of In2O3-In2S3 Heterojunction Encapsulated by N-Doped C as an Excellent Visible-Light-Active Photocatalyst for Organic Transformation. , 2020, Inorganic chemistry.

[12]  Hongqi Sun,et al.  Hierarchically porous hydrangea-like In2S3/In2O3 heterostructures for enhanced photocatalytic hydrogen evolution. , 2020, Journal of colloid and interface science.

[13]  M. Sheikhi,et al.  Effect of Ag on the ZnO nanoparticles properties as an ethanol vapor sensor , 2020 .

[14]  G. Lu,et al.  High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers , 2020 .

[15]  A. Labidi,et al.  Highly sensitive nitrogen dioxide gas sensors based on sprayed β-In2S3 film , 2020 .

[16]  Jinglong Bai,et al.  Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection , 2020 .

[17]  Jing Cao,et al.  Electronic structure-dependent formaldehyde gas sensing performance of the In2O3/Co3O4 core/shell hierarchical heterostructure sensors. , 2020, Journal of colloid and interface science.

[18]  T. Fang,et al.  Mechanism and characteristics of Au-functionalized SnO2/In2O3 nanofibers for highly sensitive CO detection , 2020 .

[19]  H. Haick,et al.  Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials , 2020, Nano-micro letters.

[20]  Xiufang Zhang,et al.  Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation , 2019, Applied Catalysis B: Environmental.

[21]  Xianying Wang,et al.  Hierarchical In2O3@SnO2 Core-shell Nanofiber for High Efficiency Formaldehyde Detection. , 2019, ACS applied materials & interfaces.

[22]  A. Labidi,et al.  Substrate temperature effect on microstructure, oxygen adsorption and ethanol sensing response of sprayed In2S3 films , 2019, Journal of Materials Science: Materials in Electronics.

[23]  S. Akbar,et al.  Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: A review , 2019, Sensors and Actuators B: Chemical.

[24]  Jianbin Xu,et al.  Thickness‐Dependent Optical Properties and In‐Plane Anisotropic Raman Response of the 2D β‐In2S3 , 2019, Advanced Optical Materials.

[25]  Zanhong Deng,et al.  Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor , 2019, Sensors and Actuators B: Chemical.

[26]  Dhanjai,et al.  Core@shell nanomaterials based sensing devices: A review , 2019, TrAC Trends in Analytical Chemistry.

[27]  Changhui Zhao,et al.  Debye-length controlled gas sensing performances in NiO@ZnO p-n junctional core–shell nanotubes , 2019, Journal of Physics D: Applied Physics.

[28]  Y. Fu,et al.  Ultrafast Response/Recovery and High Selectivity of the H2S Gas Sensor Based on α-Fe2O3 Nano-Ellipsoids from One-Step Hydrothermal Synthesis. , 2019, ACS applied materials & interfaces.

[29]  Tong Zhang,et al.  An overview: Facet-dependent metal oxide semiconductor gas sensors , 2018, Sensors and Actuators B: Chemical.

[30]  Changhui Zhao,et al.  Tailorable Morphology of Core–Shell Nanofibers with Surface Wrinkles for Enhanced Gas-Sensing Properties , 2018, ACS Applied Nano Materials.

[31]  V. Ramakrishnan,et al.  Yellow and warm white light emitting Zn doped Y2O3 for near UV excitable phosphor converted WLED , 2018, Journal of Materials Science: Materials in Electronics.

[32]  Changhui Zhao,et al.  Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes , 2018, Sensors and Actuators B: Chemical.

[33]  P. Wang,et al.  Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres , 2018, Sensors and Actuators B: Chemical.

[34]  A. Labidi,et al.  Ethanol sensing properties of sprayed β-In2S3 thin films , 2018 .

[35]  Jae-Hun Kim,et al.  How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature , 2018 .

[36]  Ananya Dey,et al.  Semiconductor metal oxide gas sensors: A review , 2018 .

[37]  Yiming Li,et al.  Application of Cesium on the Restriction of Precursor Crystallization for Highly Reproducible Perovskite Solar Cells Exceeding 20% Efficiency. , 2018, ACS applied materials & interfaces.

[38]  Changhui Zhao,et al.  Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning , 2018 .

[39]  Hongbing Lu,et al.  Synthesis of porous NiO-In2O3 composite nanofibers by electrospinning and their highly enhanced gas sensing properties , 2017 .

[40]  X. Liu,et al.  A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method , 2016 .

[41]  Aicheng Chen,et al.  Facile and Controllable Modification of 3D In2O3 Microflowers with In2S3 Nanoflakes for Efficient Photocatalytic Degradation of Gaseous ortho-Dichlorobenzene , 2016 .

[42]  Changhui Zhao,et al.  Grain refining effect of calcium dopants on gas-sensing properties of electrospun α-Fe2O3 nanotubes , 2016 .

[43]  Vincenzo Guidi,et al.  Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors , 2016, Sensors.

[44]  Giovanni Neri,et al.  Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review , 2015, Journal of Nanoparticle Research.

[45]  Changhui Zhao,et al.  Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping , 2015 .

[46]  E. Xie,et al.  Tunable white light emission by variation of composition and defects of electrospun Al2O3–SiO2 nanofibers , 2015, Beilstein journal of nanotechnology.

[47]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[48]  Sunghoon Park,et al.  Role of the interfaces in multiple networked one-dimensional core-shell nanostructured gas sensors. , 2014, ACS applied materials & interfaces.

[49]  Changhui Zhao,et al.  Effects of SnO2 additives on nanostructure and gas-sensing properties of α-Fe2O3 nanotubes , 2014 .

[50]  Yong Peng,et al.  Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite. , 2013, Nanoscale.

[51]  Zhenxing Zhang,et al.  A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. , 2012, Nanoscale.

[52]  Elisabetta Comini,et al.  Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing , 2011 .

[53]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[54]  Jungwoo Lee,et al.  Enhanced charge-collection efficiency of In2S3∕In2O3 photoelectrochemical cells in the presence of single-walled carbon nanotubes , 2007 .

[55]  T. Ungár Microstructural parameters from X-ray diffraction peak broadening , 2004 .