Adaptive thermo-mechanical finite element formulation based on goal-oriented error estimation

Abstract In this paper, a rh-adaptive thermo-mechanical formulation based on goal-oriented error estimation is proposed. The goal-oriented error estimation relies on different recovery-based error estimators, i.e. the superconvergent patch recovery (SPR), L 2 -projection patch recovery ( L 2 -PR) and weighted superconvergent patch recovery (WSPR). A new adaptive refinement strategy (ARS) is presented that minimizes the error in a quantity of interest and refines the discretization such that the error is equally distributed on the refined mesh. The method is validated by numerous numerical examples where an analytical solution or reference solution is available.

[1]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[2]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[3]  O. C. Zienkiewicz,et al.  An Adaptive p- Version Finite Element Method for Transient Flow Problems with Moving Boundaries , 2006 .

[4]  Timon Rabczuk,et al.  Initially rigid cohesive laws and fracture based on edge rotations , 2013 .

[5]  Hehua Zhu,et al.  An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function , 2014 .

[6]  Amir R. Khoei,et al.  3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method , 2009 .

[7]  Ibrahim A. Abbas,et al.  Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity , 2007 .

[8]  Amir R. Khoei,et al.  Crack growth modeling via 3D automatic adaptive mesh refinement based on modified-SPR technique , 2013 .

[9]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[10]  H. Moslemi,et al.  Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique , 2009 .

[11]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[12]  Charles E. Augarde,et al.  A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields , 2014 .

[13]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[16]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[17]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[18]  Y. Pao A first course in finite element analysis , 1986 .

[19]  Juan José Ródenas,et al.  Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .

[20]  Timon Rabczuk,et al.  An adaptive multiscale method for quasi-static crack growth , 2014 .

[21]  N. Nguyen-Thanh,et al.  An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics , 2014 .

[22]  Leszek Demkowicz,et al.  Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .

[23]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[24]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[25]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[26]  Timon Rabczuk,et al.  Efficient coarse graining in multiscale modeling of fracture , 2014 .

[27]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[28]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[29]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[30]  Timon Rabczuk,et al.  Finite strain fracture of plates and shells with configurational forces and edge rotations , 2013 .

[31]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[32]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[33]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[34]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[35]  Hehua Zhu,et al.  A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis , 2014 .

[36]  Javier Oliver,et al.  CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .

[37]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[38]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .

[39]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[40]  Juan José Ródenas,et al.  Locally equilibrated superconvergent patch recovery for efficient error estimation in quantities of interest , 2012, ArXiv.

[41]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .