Imparting the unique properties of DNA into complex material architectures and functions.

While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA's ability to control a material's architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Jing Li,et al.  A highly sensitive and selective catalytic DNA biosensor for lead ions [9] , 2000 .

[3]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[4]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[5]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[6]  Stefano Cabrini,et al.  DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays. , 2010, ACS nano.

[7]  W. Tan,et al.  Engineering target-responsive hydrogels based on aptamer-target interactions. , 2008, Journal of the American Chemical Society.

[8]  Feng Liang,et al.  A Convenient Route to Functionalized Carbon Nanotubes , 2004 .

[9]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[10]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[11]  Sungho Jin,et al.  50 nm DNA nanoarrays generated from uniform oligonucleotide films. , 2009, ACS nano.

[12]  Itamar Willner,et al.  Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. , 2010, Analytical chemistry.

[13]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[14]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[15]  Luke P. Lee,et al.  Aptamer-based SERRS sensor for thrombin detection. , 2008, Nano letters.

[16]  Sungho Jin,et al.  Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement. , 2010, ACS nano.

[17]  Victor Sidorov,et al.  DNA-mediated self-assembly of carbon nanotube-based electronic devices , 2004 .

[18]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[19]  Ming Zheng,et al.  DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes , 2009, Nature.

[20]  Cuichen Wu,et al.  Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. , 2012, Journal of the American Chemical Society.

[21]  Yongqiang Wen,et al.  A flexible DNA modification approach towards construction of gold nanoparticle assemblies. , 2012, Chemical communications.

[22]  J Li,et al.  In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. , 2000, Nucleic acids research.

[23]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[24]  Yan Gao,et al.  Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. , 2012, Journal of the American Chemical Society.

[25]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[26]  Arun Majumdar,et al.  DNA-Based Programmed Assembly of Gold Nanoparticles on Lithographic Patterns with Extraordinary Specificity , 2004 .

[27]  Hao Yan,et al.  Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. , 2009, Chemical communications.

[28]  Jennifer N. Cha,et al.  Amplified protein detection and identification through DNA-conjugated M13 bacteriophage. , 2012, ACS nano.

[29]  Juan Xu,et al.  A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions. , 2010, Chemical communications.

[30]  G. F. Joyce,et al.  A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity. , 1995, Chemistry & biology.

[31]  Chih-Kuang Yeh,et al.  Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. , 2012, Biomaterials.

[32]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[33]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[34]  Chad A Mirkin,et al.  Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. , 2006, Journal of the American Chemical Society.

[35]  Stephen Mann,et al.  DNA-driven self-assembly of gold nanorods , 2001 .

[36]  Yi Lu,et al.  A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. , 2003, Journal of the American Chemical Society.

[37]  D. Luo,et al.  A mechanical metamaterial made from a DNA hydrogel. , 2012, Nature nanotechnology.

[38]  Liguang Xu,et al.  Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. , 2012, Journal of the American Chemical Society.

[39]  Chunhai Fan,et al.  DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. , 2012, Analytical chemistry.

[40]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[41]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[42]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[43]  Yi Lu,et al.  A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. , 2007, Journal of the American Chemical Society.

[44]  Soong Ho Um,et al.  Enzyme-catalysed assembly of DNA hydrogel , 2006, Nature materials.

[45]  Yi Lu,et al.  Smart “Turn‐on” Magnetic Resonance Contrast Agents Based on Aptamer‐Functionalized Superparamagnetic Iron Oxide Nanoparticles , 2007, Chembiochem : a European journal of chemical biology.

[46]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[47]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[48]  Phyllis F Xu,et al.  Switchable nanodumbbell probes for analyte detection. , 2013, Small.

[49]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[50]  Barry Schweitzer,et al.  Measuring proteins on microarrays. , 2002, Current opinion in biotechnology.

[51]  Yingfu Li,et al.  DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. , 1998, Chemistry & biology.

[52]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[53]  M. Ancona,et al.  Selective DNA-mediated assembly of gold nanoparticles on electroded substrates. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[54]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[55]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[56]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[57]  Sadik C Esener,et al.  Aptamer‐Crosslinked Microbubbles: Smart Contrast Agents for Thrombin‐Activated Ultrasound Imaging , 2012, Advanced materials.

[58]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. Paul Alivisatos,et al.  Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. , 2009, Journal of the American Chemical Society.

[60]  R. Misra,et al.  Biomaterials , 2008 .

[61]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[62]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[63]  Wenlong Cheng,et al.  Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. , 2008, Nature nanotechnology.

[64]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[65]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[66]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[67]  Joanna Kosman,et al.  Peroxidase-mimicking DNAzymes for biosensing applications: a review. , 2011, Analytica chimica acta.

[68]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[69]  Jennifer N. Cha,et al.  High density DNA loading on the M13 bacteriophage provides access to colorimetric and fluorescent protein microarray biosensors. , 2013, Chemical communications.

[70]  Phyllis F Xu,et al.  DNA mediated assembly of single walled carbon nanotubes: role of DNA linkers and annealing. , 2011, Physical chemistry chemical physics : PCCP.

[71]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[72]  O. Urakawa,et al.  Small - , 2007 .

[73]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[74]  Yi Xiao,et al.  Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes , 2010, Proceedings of the National Academy of Sciences.

[75]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[76]  Feng Yan,et al.  Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. , 2011, The Analyst.

[77]  Yingfu Li,et al.  Structure-switching signaling aptamers. , 2003, Journal of the American Chemical Society.

[78]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[79]  Hanadi F Sleiman,et al.  Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. , 2012, Journal of the American Chemical Society.

[80]  Yi Lu,et al.  Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. , 2003, Analytical chemistry.

[81]  Yi Lu,et al.  Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. , 2007, Angewandte Chemie.

[82]  A Paul Alivisatos,et al.  Discrete nanostructures of quantum dots/Au with DNA. , 2004, Journal of the American Chemical Society.

[83]  Hyunwoo Noh,et al.  Surface-driven DNA assembly of binary cubic 3D nanocrystal superlattices. , 2011, Small.

[84]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[85]  Yi Lu,et al.  A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity , 2007, Proceedings of the National Academy of Sciences.

[86]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[87]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[88]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[89]  Chad A Mirkin,et al.  DNA-gold triangular nanoprism conjugates. , 2008, Small.

[90]  Hao Yan,et al.  PNA-peptide assembly in a 3D DNA nanocage at room temperature. , 2013, Journal of the American Chemical Society.

[91]  Xiaoling Zhang,et al.  An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. , 2010, Angewandte Chemie.

[92]  Yi Xiao,et al.  Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. , 2004, Analytical chemistry.

[93]  Oleg Gang,et al.  Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA. , 2011, Journal of the American Chemical Society.

[94]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[95]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[96]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[97]  Yi Lu,et al.  A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. , 2011, Chemical communications.