On Robust Pseudo State Estimation of Fractional Order Systems

The goal of this chapter is to design robust observers for fractional dynamic continuous-time linear systems described by pseudo state space representation. The fractional observer is guaranteed to compute a domain enclosing all the system pseudo states that are consistent with the model, the disturbances and the measurement noise realizations. Uncertainties on the initial pseudo state and noises are propagated in a reliable way to estimate the bounds of the fractional pseudo state. Only the bounds of the uncertainties are used and no additional assumptions about their stationarity or ergodicity are taken into account. A fractional observer is firstly built for a particular case where the estimation error can be designed to be positive. Then, the general case is investigated through changes of coordinates. Some numerical simulations illustrate the proposed methodology.

[1]  D. Matignon,et al.  Some Results on Controllability and Observability of Finite-dimensional Fractional Differential Systems , 1996 .

[2]  V. E. Tarasov Fractional integro-differential equations for electromagnetic waves in dielectric media , 2009, 1107.5892.

[3]  Tian Liang Guo,et al.  Controllability and observability of impulsive fractional linear time-invariant system , 2012, Comput. Math. Appl..

[4]  Maamar Bettayeb,et al.  A NOTE ON THE CONTROLLABILITY AND THE OBSERVABILITY OF FRACTIONAL DYNAMICAL SYSTEMS , 2006 .

[5]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[6]  A. Oustaloup,et al.  Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements , 2004 .

[7]  M. N. Abdelkrim,et al.  Continuous fractional Kalman filter , 2012, International Multi-Conference on Systems, Sygnals & Devices.

[8]  Alain Oustaloup,et al.  Fractional Order Differentiation and Robust Control Design , 2015 .

[9]  Alain Oustaloup,et al.  Orthonormal basis functions for modeling continuous-time fractional systems 1 , 2003 .

[10]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[11]  Alain Oustaloup,et al.  State variables and transients of fractional order differential systems , 2012, Comput. Math. Appl..

[12]  D. Baleanu,et al.  Fractional Electromagnetic Equations Using Fractional Forms , 2009 .

[13]  R. M. Nelms,et al.  Modeling double-layer capacitor behavior using ladder circuits , 2003 .

[14]  D. Sierociuk,et al.  Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation , 2006 .

[15]  Alain Oustaloup,et al.  Fractional system identification for lead acid battery state of charge estimation , 2006, Signal Process..

[16]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..

[17]  Yang Wang,et al.  Modeling Ultracapacitors as Fractional-Order Systems , 2010 .

[18]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[19]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[20]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[21]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[22]  Christophe Combastel,et al.  Stable Interval Observers in BBC for Linear Systems With Time-Varying Input Bounds , 2013, IEEE Transactions on Automatic Control.

[23]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[24]  Dominik Sierociuk,et al.  OBSERVER FOR DISCRETE FRACTIONAL ORDER STATE-SPACE SYSTEMS , 2006 .

[25]  D. Amodio,et al.  Application of fractional derivative models in linear viscoelastic problems , 2011 .

[26]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[27]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[28]  Denis V. Efimov,et al.  Interval state observer for nonlinear time varying systems , 2013, Autom..

[29]  B. d'Andrea-Novel,et al.  Observer-based controllers for fractional differential systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[30]  J. Junkins,et al.  Kalman Filter for Linear Fractional Order Systems , 2012 .

[31]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[32]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[33]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[34]  Alain Oustaloup,et al.  Fractional Order Differentiation and Robust Control Design: CRONE, H-infinity and Motion Control , 2015 .

[35]  A. Tustin,et al.  The design of systems for automatic control of the position of massive objects , 1958 .

[36]  Tadeusz Kaczorek,et al.  Fractional Positive Continuous-Time Linear Systems and Their Reachability , 2008, Int. J. Appl. Math. Comput. Sci..

[37]  T. Kaczorek,et al.  Fractional Linear Systems and Electrical Circuits , 2014 .

[38]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[39]  Mohamed Aoun,et al.  Discrete fractional Kalman filter , 2009, ICONS.

[40]  R. Herrmann,et al.  Fractional Calculus: an Introduction for Physicists (2nd Edition) , 2014 .

[41]  St'ephane Dugowson Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation , 1994 .

[42]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .