Combinatorial Clustering and the Beta Negative Binomial Process
暂无分享,去创建一个
Michael I. Jordan | Tamara Broderick | John W. Paisley | Lester W. Mackey | Tamara Broderick | Lester W. Mackey | J. Paisley
[1] J. McCloskey,et al. A model for the distribution of individuals by species in an environment , 1965 .
[2] J. Kingman,et al. Completely random measures. , 1967 .
[3] W. Ewens. The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.
[4] R. M. Korwar,et al. Contributions to the Theory of Dirichlet Processes , 1973 .
[5] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[6] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .
[8] N. Hjort. Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .
[9] M. West,et al. Hyperparameter estimation in Dirichlet process mixture models , 1992 .
[10] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[11] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[12] Yongdai Kim. NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .
[13] P. Damlen,et al. Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .
[14] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[15] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[16] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[17] Michael Mitzenmacher,et al. A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..
[18] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[19] S. Walker. Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .
[20] Stephen E. Fienberg,et al. Bayesian Mixed Membership Models for Soft Clustering and Classification , 2004, GfKl.
[21] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[22] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[23] M. Newman. Power laws, Pareto distributions and Zipf's law , 2005 .
[24] Thomas L. Griffiths,et al. Interpolating between types and tokens by estimating power-law generators , 2005, NIPS.
[25] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[26] Alexei A. Efros,et al. Discovering object categories in image collections , 2005 .
[27] Henk A. L. Kiers,et al. Classification - the Ubiquitous challenge. , 2005 .
[28] Bill Triggs,et al. Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[29] Alexei A. Efros,et al. Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[30] Yee Whye Teh,et al. A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.
[31] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[32] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[33] Cordelia Schmid,et al. Coloring Local Feature Extraction , 2006, ECCV.
[34] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..
[35] Ramsés H. Mena,et al. Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .
[36] Bill Triggs,et al. Region Classification with Markov Field Aspect Models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[37] J. Pitman,et al. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws ∗ , 2007, math/0701718.
[38] Michalis K. Titsias,et al. The Infinite Gamma-Poisson Feature Model , 2007, NIPS.
[39] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[40] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[41] Fei-Fei Li,et al. Spatially Coherent Latent Topic Model for Concurrent Segmentation and Classification of Objects and Scenes , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[42] Michael I. Jordan,et al. Nonparametric bayesian models for machine learning , 2008 .
[43] O. Papaspiliopoulos. A note on posterior sampling from Dirichlet mixture models , 2008 .
[44] Feng Qi (祁锋). Bounds for the Ratio of Two Gamma Functions , 2009 .
[45] Y. Teh,et al. Indian Buffet Processes with Power-law Behavior , 2009, NIPS.
[46] Michael I. Jordan,et al. Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.
[47] Yee Whye Teh,et al. A stochastic memoizer for sequence data , 2009, ICML '09.
[48] Lawrence Carin,et al. A Stick-Breaking Construction of the Beta Process , 2010, ICML.
[49] M. R. Leadbetter. Poisson Processes , 2011, International Encyclopedia of Statistical Science.
[50] Stephen G. Walker,et al. Slice sampling mixture models , 2011, Stat. Comput..
[51] Michael I. Jordan,et al. Beta Processes, Stick-Breaking and Power Laws , 2011, 1106.0539.
[52] Hao Chen,et al. Estimation of Parent Specific DNA Copy Number in Tumors using High-Density Genotyping Arrays , 2011, PLoS Comput. Biol..
[53] A. Laforgia,et al. On the asymptotic expansion of a ratio of gamma functions , 2012 .
[54] David B. Dunson,et al. Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.