Analysis of aging of commercial composite metal oxide – Li4Ti5O12 battery cells

[1]  Pontus Svens,et al.  Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis , 2014 .

[2]  Huei Peng,et al.  On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression , 2013 .

[3]  R. J. Brodd,et al.  Batteries for sustainability : selected entries from the Encyclopedia of sustainability science and technology , 2013 .

[4]  Wei Lv,et al.  Gassing in Li4Ti5O12-based batteries and its remedy , 2012, Scientific Reports.

[5]  Matthieu Dubarry,et al.  Synthesize battery degradation modes via a diagnostic and prognostic model , 2012 .

[6]  Pontus Svens,et al.  HEV lithium-ion battery testing and driving cycle analysis in a heavy-duty truck field study , 2012 .

[7]  Hannah M. Dahn,et al.  Long-Term Low-Rate Cycling of LiCoO2/Graphite Li-Ion Cells at 55°C , 2012 .

[8]  Dongmei Wu Kinetic performance of Li4Ti5O12 anode material synthesized by the solid-state method , 2012, Ionics.

[9]  J. C. Burns,et al.  Interpreting High Precision Coulometry Results on Li-ion Cells , 2011 .

[10]  N. Kosova,et al.  From ‘core–shell’ to composite mixed cathode materials for rechargeable lithium batteries by mechanochemical process , 2011 .

[11]  Johan Lindström,et al.  Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications , 2011 .

[12]  J. C. Burns,et al.  High-Precision Differential Capacity Analysis of LiMn2O4/graphite Cells , 2011 .

[13]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[14]  Zongping Shao,et al.  Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance , 2010 .

[15]  Matthieu Dubarry,et al.  Identify capacity fading mechanism in a commercial LiFePO4 cell , 2009 .

[16]  N. Kosova,et al.  LiMn2O4 and LiCoO2 composite cathode materials obtained by mechanical activation , 2009 .

[17]  Masatoshi Uno,et al.  Cycle life evaluation of 3 Ah LixMn2O4-based lithium-ion secondary cells for low-earth-orbit satellites: II. Harvested electrode examination , 2008 .

[18]  T. Horiba,et al.  State Analysis of Lithium-Ion Batteries Using Discharge Curves , 2008 .

[19]  Dong-Qiang Liu,et al.  Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries , 2007 .

[20]  P. Novák,et al.  Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8 , 2007 .

[21]  R. Yazami,et al.  Crystal structure studies of thermally aged LiCoO2 and LiMn2O4 cathodes , 2006 .

[22]  M. Dubarry,et al.  Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries , 2006 .

[23]  John Newman,et al.  Cyclable Lithium and Capacity Loss in Li-Ion Cells , 2005 .

[24]  I. Bloom,et al.  Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application , 2005 .

[25]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 2. Applications , 2005 .

[26]  Kevin L. Gering,et al.  Differential voltage analyses of high-power lithium-ion cells: 3. Another anode phenomenon , 2005 .

[27]  B. Fultz,et al.  Hexagonal to Cubic Spinel Transformation in Lithiated Cobalt Oxide , 2004 .

[28]  John Newman,et al.  Effect of Anode Film Resistance on the Charge/Discharge Capacity of a Lithium-Ion Battery , 2003 .

[29]  B. Fultz,et al.  A transmission electron microscopy study of cycled LiCoO2 , 2003 .

[30]  H. Sakaebe,et al.  Structure and physical property changes of de-lithiated spinels for Li1.02−xMn1.98O4 after high-temperature storage , 2003 .

[31]  Yong‐Mook Kang,et al.  Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2 , 2001 .

[32]  P. Kohl,et al.  Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling , 2001 .

[33]  H. Berg,et al.  The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .

[34]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[35]  Josh Thomas,et al.  Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel , 1999 .

[36]  Jean-Marie Tarascon,et al.  An update on the high temperature ageing mechanism in LiMn2O4-based Li-ion cells , 1999 .

[37]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[38]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[39]  Masaki Yoshio,et al.  An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds , 1996 .

[40]  Bruce Dunn,et al.  Synthesis and Electrochemical Studies of Spinel Phase LiMn2 O 4 Cathode Materials Prepared by the Pechini Process , 1996 .

[41]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[42]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[43]  Michael M. Thackeray,et al.  Spinel versus layered structures for lithium cobalt oxide synthesised at 400°C , 1993 .